K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

x+ 2005x2 + 2004x + 2005 

=x4-x+2005x2+2005x+2005

=x(x3-1)+2005.(x2+x+1)

=x(x-1)(x2+x+1)+2005.(x2+x+1)

=(x2+x+1)[x(x-1)+2005]

=(x2+x+1)(x2-x+2005)

12 tháng 1 2017
làm sao bn
1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

5 tháng 5 2016

Dư 1 và -1

5 tháng 5 2016

Bài này trên violimpic à?

Quen thế.

\(A\left(x\right)=x^{19}+x^5-x^{1995}\) 

\(Q\left(x\right)=x^2-1\)

\(A\left(x\right)=Q\left(x\right)+r\)

\(<=>x^{19}+x^5-x^{1995}=\left(x^2-1\right)+r\)

Điều này đúng với mọi x thuộc R

Vậy ta có x=1

=> 1+1+1=0+r

=>r=3

Vậy số dư là 3

Cách mình làm là phương pháp giá trị riêng, một phương pháp cực hay trong toán chia hết của các đa thức.

Nó còn là một định lí là định lí Bơzu.

Nhưng trong chương trình phổ thông, nó là phương pháp giá trị riêng.

10 tháng 3 2017

\(=x^{161}+x^{37}+x^{13}+x^5+x+2006\)

\(=\left(x^{161}+x^3\right)+\left(x^{37}+x^3\right)+\left(x^{13}+x^3\right)+\left(x^5+x^3\right)+\left(-4x^3-4x\right)+5x+2006\)

\(=x^3\left(\left(x^2\right)^{79}+1\right)+x^3\left(\left(x^2\right)^{17}+1\right)+x^3\left(\left(x^2\right)^5+1\right)+x^3\left(\left(x\right)^2+1\right)-4x\left(x^2+1\right)+5x+2006\)

\(=\left(x^2+1\right)A\left(x\right)+5x+2006\)

Vậy số dư của P(x) chia cho x2 + 1 là 5x + 2006

10 tháng 3 2017

AD định lý Bơ-du: 'Dư trong phép chia f(x) cho x-a là f(a)'

=> Dư trong phép chia trên là:

f(-1)= (-1)161 + (-1)37 + (-1)13 + (-1)5 - 1+2006

= 2001

Vậy.......

29 tháng 3 2021

có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5

f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2

do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+caf(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a

=(x2+1)(C(x).x+C(x)+a)+bx+ca=(x2+1)(C(x).x+C(x)+a)+bx+c−a

Vậy bx+ca=x+2\hept{b=1ca=2bx+c−a=x+2⇒\hept{b=1c−a=2

mặt khác ta có f(1)=5ab+c=5a+c=6\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4

vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4

21 tháng 10 2018

\(x^{19}+x^5-x^{2017}=\left(x^{19}-x\right)+\left(x^5-x\right)-\left(x^{2017}-x\right)+x\)

\(=x\left[\left(x^2\right)^9-1\right]+x\left[\left(x^2\right)^2-1\right]-x\left[\left(x^2\right)^{1008}-1\right]+x\)

\(=x\left(x^2-1\right).A_{\left(x\right)}+x\left(x^2-1\right)B_{\left(x\right)}-x\left(x^2-1\right)C_{\left(x\right)}+x\)

\(=x\left(x^2-1\right)\left(A_{\left(x\right)}+B_{\left(x\right)}+C_{\left(x\right)}\right)+x\)

Vậy số dư là x