Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Bezout ta có:
\(f\left(x\right)\)chia hết cho \(2x-1\Rightarrow f\left(x\right)=\left(2x-1\right)q\left(x\right)\)
\(\Rightarrow f\left(\frac{1}{2}\right)=0\left(1\right)\)
\(f\left(x\right)\)chia cho \(x-2\)dư 6\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+6\)
\(\Rightarrow f\left(2\right)=6\left(2\right)\)
Vì \(f\left(x\right)\)chia cho \(2x^2-5x+2\)được thương là \(x+2\)và còn dư nên
\(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+ax+b\)
\(=\left(2x^2-4x-x+2\right)\left(x+2\right)+ax+b\)
\(=\left[2x\left(x-2\right)-\left(x-2\right)\right]\left(x+2\right)+ax+b\)
\(=\left(x-2\right)\left(2x-1\right)\left(x+2\right)+ax+b\)Kết hợp với (1) và (2) ta được:
\(\hept{\begin{cases}\frac{1}{2}a+b=0\\2a+b=6\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=4\\b=-2\end{cases}}\)
Vạy \(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+4x-2\)
\(P\left(x\right)=\left(x-2\right)Q\left(x\right)+1\) \(\Rightarrow P\left(2\right)=1\)
\(P\left(x\right)=\left(x+1\right).R\left(x\right)+2\Rightarrow P\left(-1\right)=2\)
\(P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\) (1)
Thay \(x=2\) vào (1): \(P\left(2\right)=2a+b\Rightarrow2a+b=1\)
Thay \(x=-1\) vào (1): \(P\left(-1\right)=-a+b\Rightarrow-a+b=2\)
\(\Rightarrow\left\{{}\begin{matrix}2a+b=1\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)
Gọi a(x) b(x) lần lượt là các thương của f(x) cho x-1 và x+2
f(x)=(x-1)a(x) + 4
f(1)=4
f(x)=(x+2)b(x) + 1
f(-2)=1
(x-1)(x+2) có bậc là 2=) đa thức dư có dạng cx+d
f(1)=(1-1)(1+2).5x2 +cx+d
=c+d=4
f(-2)=(-2-1)(-2+2).5x2 +c.(-2)+d
=d-2c=1
=)c+d-(d-2c)=c+d-d+2c=3c=3
=)c=1
=)d=3
Vậy đa thức dư của f(x) chia cho(x-1)(x+2) có dạng 1x+3 hay x+3
\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)
\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)
Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)
\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)
\(f\left(-1\right)=a-b+c=4\) (2)
Biến đổi biểu thức (1):
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)
\(\Rightarrow f\left(x\right)\) chia \(x^2+1\) dư \(bx+c-a\)
\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)
Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
Theo Bơdu, ta có:
\(f\left(x\right):\left(x+1\right)\) dư 4
\(\Rightarrow f\left(-1\right)=4\)
Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)
Gọi \(P\left(x\right)\) là đa thức thương. Ta có:
\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)
\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)
Vì \(f\left(x\right):\left(x^2+1\right)\)dư \(2x+3\)
\(\Rightarrow bx+c-a=2x+3\)
\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)
Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)
\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)
\(\Leftrightarrow a+c=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)
Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Ta có \(F\left(x\right)=g\left(x\right).\left(x+1\right)+4\)
Giả sử \(g\left(x\right)=r\left(x\right).\left(x^2+1\right)+ax+b\)
Suy ra \(F\left(x\right)=r\left(x\right).\left(x+1\right)\left(x^2+1\right)+\left(ax+b\right)\left(x+1\right)+4\)
Đa thức dư là \(h\left(x\right)=\left(ax+b\right)\left(x+1\right)+4\) ta có \(h\left(x\right)=ax^2+\left(a+b\right)x+\left(b+4\right)\)
Theo giả thiết \(h\left(x\right)\) chia \(\left(x^2+1\right)\) dư \(2x+3\)
\(h\left(x\right)=a\left(x^2+1\right)+\left(a+b\right)x+\left(b-a+4\right)\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=2\\b-a+4=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)
Vậy đa thức dư là \(h\left(x\right)=\left(\frac{3}{2}x+\frac{1}{2}\right)\left(x+1\right)+4\)
Ta có f(x) chia cho x + 1 dư 4 nên theo bê-du ta có: f(-1) = 4 (1)
Khi chi f(x) cho (x + 1)(x2 + 1) thì phần dư phải là đa thức bậc 2 hay
f(x) = (x + 1)(x2 + 1)Q(x) + ax2 + bx + c
= (x + 1)(x2 + 1)Q(x) + a(x2 + 1)+ bx + c - a
= (x2 + 1)[(x + 1)Q(x) + a] + bx + c - a (2)
Mà f(x) chia cho x2 + 1 dư 2x + 3 (3)
Từ (1), (2), (3) ta suy ra hệ
\(\hept{\begin{cases}b=2\\c-a=3\\a-b+c=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\a=\frac{3}{2}\\c=\frac{9}{2}\end{cases}}\)
Vậy đa thức dư cần tìm là: \(\frac{3}{2}x^2+2x+\frac{9}{2}\)
Áp dụng định lý Bezout ta có:
\(P\left(x\right)\)chia cho x-2 dư 1 \(\Rightarrow P\left(2\right)=1\left(1\right)\)
\(P\left(x\right)\)chia cho x+1 dư 2 \(\Rightarrow P\left(-1\right)=2\left(2\right)\)
Vì \(P\left(x\right)\)chia cho \(x^2-x-2\)thì được thương 2x-1 và còn dư
\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\)
\(=\left(x^2+x-2x-2\right)\left(2x-1\right)+ax+b\)
\(=\left[x\left(x+1\right)-2\left(x+1\right)\right]\left(2x-1\right)+ax+b\)
\(=\left(x+1\right)\left(x-2\right)\left(2x-1\right)+ax+b\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}-a+b=2\\2a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{-1}{3}\\b=\frac{5}{3}\end{cases}\left(4\right)}\)
Thay (4) vào (3) ta được:
\(P\left(x\right)=\left(x+1\right)\left(x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)