Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa thức bị chia có bậc ba, đa thức chia có bậc hai nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là \(x^3:x^2=x\)
Gọi thương là x + c, ta có:
\(x^3+ax+b=\left(x^2+x-2\right)\left(x+c\right)\)
nên \(x^{ }+ax+b=x^3+\left(c+1\right)x^2+\left(c-2\right)x-2c\)
Hai đa thức bằng nhau nên:
\(\left\{{}\begin{matrix}c+1=0\\c-2=a\\-2c=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-3\\b=2\end{matrix}\right.\)
Vậy với a = -3; b = 2 thì \(x^3+ax+b\) chia hết cho \(x^2+x-2\) , thương là x - 1
Ta có : \(\left(x^3+ax+b\right)⋮\left(x^2+x-2\right)\)
Gọi ( x+k) là thương của đa thức trên .Ta có :
\(\left(x^3+ax+b\right)=\left(x+k\right)\left(x^2+x-2\right)\)
\(=>x^3+ax+b=x^3+kx^2+x^2+kx-2x-2k\)
\(=>x^3+ax+b=x^3+x^2\left(k+1\right)+x\left(k-2\right)-2k\)
Đồng nhất các hệ số ta có :
\(\left\{{}\begin{matrix}k+1=0\\k-2=a\\b=\left(-2k\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=\left(-1\right)\\a=\left(-3\right)\\b=2\end{matrix}\right.\)
Vậy : a= (-3) : b= 2
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
Chưa học Bezout thì ta qua cách này:
Ta có: \(x^4+ax+b\)
\(=x^4-4x^2+4x^2-16+ax+b+16\)
\(=x^2\left(x^2-4\right)+4\left(x^2-4\right)+ax+b+16\)
Do \(x^2\left(x^2-4\right)+4\left(x^2-4\right)\) chia hết cho \(x^2-4\)
\(\Rightarrow ax+b+16=0\)
\(\Rightarrow ax=0\) và \(b+16=0\)
\(\Rightarrow a=0\) và \(b=-16\)
Hệ số bất định đi :)
Đặt h(x) là thương trong phép chia f(x) cho g(x)
f(x) bậc 4 g(x) bậc 2 => h(x) bậc 2
=> h(x) có dạng x2 + cx + d
Khi đó f(x) ⋮ g(x) <=> f(x) = g(x).h(x)
<=> x4 + ax2 + b = ( x2 - x - 1 )( x2 + cx + d )
<=> x4 + ax2 + b = x4 + cx3 + dx2 - x3 - cx2 - dx - x2 - cx - d
<=> x4 + ax2 + b = x4 + ( c - 1 )x3 + ( d - c - 1 )x2 + ( -d - c )x - d
Đồng nhất hệ số ta có :
\(\hept{\begin{cases}c-1=0\\d-c-1=a\\-d-c=0\end{cases}};b=-d\)=> \(\hept{\begin{cases}c=1\\d=-1\\a=-3\end{cases}};b=1\)
Vậy a = -3 ; b = 1
a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).
Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.
b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:
\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).
c) Tương tự.
bài này có 3 cách:
bài này để cho ngắn gọn và tiện trình bày thì mk sẽ lm cho bn cách 3 nha
BL
Gọi thương khi chia \(x^3+ax+b\) cho \(x^2+x-2\) là \(Q\left(x\right)\) ta có:
\(x^3+ax+b=\left(x-1\right)\left(x+2\right)Q\left(x\right)\)
Vì đẳng thức đúng với mọi x nên ta lần lượt thay x = 1; x = -2 ta được
\(\hept{\begin{cases}1+a+b=0\\-8-2a+b=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-1\\-2a+b=8\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=-3\\b=2\end{cases}}\)
Vậy...