Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
Xét :
x^4 - 3x^3 + ax + b
= (x^4-3x^3+x^2)-(x^2-3x+1) +ax+b - 3x + 1
= (x^2-3x+1).(x^2-1) + (a-3).x + (b+1)
=> để x^4-3x^3+ax+b chia hết cho x^2-3x+1 thì :
a-3=0 và b+1=0
<=> a=3 và b=-1
Vậy ...........
Tk mk nha
cho đa thức P(x)=ax^2+bx+3. Tìm các hệ só a, b biết phần dư trong phép chia P(x) cho x+2=-1 và x-1=8
Áp dụng định lí Bezout :
\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)
\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)
\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)
dùng đồng nhất thức