Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>x^4-3x^3+2x^2+4x^3-12x^2+8x+7x^2-21x+14+(a+13)x+b-14 chia hết cho x^2-3x+2
=>a+13=0 và b-14=0
=>a=-13; b=14
1. f(x)=g(x) (6x2−x+a−6b−1) + (a−5b+2)x + (2+6b2+b−ab) ⇒ f(x)⋮g(x)⇔a−5b+2=2+6b2+b−ab=0 ⇒ (b,a)=(−1;−7) ; (−2;−12)
Ta có: x2 - 1 = (x - 1)(x + 1)
Để f(x) \(⋮\) g(x) thì \(f\left(x\right)⋮\left\{{}\begin{matrix}\left(x-1\right)\left(1\right)\\\left(x+1\right)\left(2\right)\end{matrix}\right.\)
Từ (1) => \(f\left(1\right)=0\Rightarrow-2+a+2b=0\) (*)
Từ (2) => \(f\left(-1\right)=0\Rightarrow4+2b-a=0\) (**)
Trừ (*) cho (**) được:
\(-2+a+2b-4-2b+a=0\)
\(\Rightarrow2a-6=0\)
\(\Rightarrow a=3\)
Khi đó b = \(\dfrac{-1}{2}\).
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9