Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+cx+2\right)\left(ax+b\right)=ax\left(x^2+cx+2\right)+b\left(x^2+cx+2\right)\)
\(=ax^3+acx^2+2ax+bx^2+bcx+2b\)
\(=ax^3+\left(ac+b\right)x^2+\left(2a+bc\right)x+2b=x^3-x^2+2\)
Đồng nhất ta được : \(a=1;ac+b=-1;2a+bc=0;2b=2\)
\(\Rightarrow a=1;b=1;c=-2\)
a) <=> \(ax^3+\left(b+ac\right)x^2+\left(bc+2a\right)x+2b=x^3-x^2+2\)
đồng nhất 2 vế ta có: a=1; b+ac= -1; bc+2a=0; 2b=2 => a=1; b=1; c=-2
b) <=> \(ay^3+\left(3a+b\right)y^2+\left(3b+c\right)y+3c=y^3+y^2-3y\)
đồng nhất 2 vế ta có: a=1; 3a+b=1; 3b+c=-3; 3c=0 <=> a=1 => 3+b=1 <=> b=-2; c=0 mặt khác ta có: 3.(-2)+0 khác -3 => b =-2 không thỏa mãn => k xác định đc a,b,c trong trường hợp này
a) (2x - 5)(3x + b) = ax^2 + x + c
<=> 6x^2 + 2bx -15x -5b = ax^2 + x + c
<=> -ax^2 + 2bx -5b -c = -6x^2 +16x
Đồng nhất hệ số ta có :
+) -a = -6 => a= 6
+) 2b = 16 => b= 8
+) -5b -c= 0 => c= -40
c ) (ax+b)( x^2 -x-1)= ax^3 - cx^2 - 1
<=> ax^3 -ax^2-ax +bx^2-bx-b= ax^3 - cx^2 - 1
<=> (c+b-a)x^2 -(a+b)x -b = -1
Đồng nhất hệ số ta được:
+) c+b-a =0
+) -a-b = 0
+) -b = -1 => b= 1
Thay b=1 ta được a = -1 và c= -2
<p>a) (2x - 5)(3x + b) = ax^2 + x + c<br><=> 6x^2 + 2bx -15x -5b = ax^2 + x + c<br><=> -ax^2 + 2bx -5b -c = -6x^2 +16x<br>Đồng nhất hệ số ta có :<br>+) -a = -6 => a= 6<br>+) 2b = 16 => b= 8<br>+) -5b -c= 0 => c= -40</p>
\(\left(x^2+cx+2\right)\left(ax+b\right)=x^3-x^2+2\) với mọi x
\(=>x^2\left(ax+b\right)+cx\left(ax+b\right)+2\left(ax+b\right)=x^3-x^2+2\) với mọi x
\(=>ax^3+bx^2+acx^2+bcx+2ax+2b=x^3-x^2+2\) với mọi x
\(=>ax^3+\left(ac+b\right)x^2+\left(2a+bc\right)x+2b=x^3-x^2+2\) với mọi x
\(=>\) ax3=x3 =>a=1
(ac+b)x2=-x2=>ac+b=-1=>c+b=-1 (vì a=1) (1)
(2a+bc)x=0=>2a+bc=0=>2+bc=0 (vì a=1)=>bc=-2
2b=2=>b=1
Thay vào (1) => c=-1-1=-2
Vậy a=1;b=1;c=-2
câu sau tương tự
= \(ax^3+acx^2+ax+bx^2+bcx+b\) =>\(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=2;b=2\end{cases}}=>\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)
( ax + b )( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax( x2 + cx + 1 ) + b( x2 + cx + 1 ) = x3 - 3x + 2
<=> ax3 + acx2 + ax + bx2 + bcx + b = x3 - 3x + 2
<=> ax3 + ( ac + b )x2 + ( a + bc )x + b = x3 - 3x + 2
<=> \(\hept{\begin{cases}a=1\\ac+b=0\\a+bc=-3\end{cases}}\)và b = 2
<=> \(\hept{\begin{cases}a=1\\b=2\\c=-2\end{cases}}\)
Ta có x4 + x3 - x2 + ax + b = (x2 + x - 2)(x2 + cx + d)
<=> x4 + x3 - x2 + ax + b = (x - 2)(x + 1)(x2 + cx + d)
=> x = 2 là nghiệm phương trình
=> 24 + 23 - 22 + 2a + b = 0
<=> 2a + b = -20 (1)
x = -1 là nghiệm phương trình
(-1)4 + (-1)3 - (-1)2 -a + b = 0
<=> -a + b = 1 (2)
Từ (1) và (2) => a = -7 ; b = -6
Khi đó x4 + x3 - x2 - 7x - 6 = (x2 + x - 2)(x2 + cx + d)
<=> x3(x + 1) - (x + 1)(x + 6) = (x + 1)(x - 2)(x2 + cx + d)
<=> (x + 1)(x3 - x - 6) = (x + 1)(x - 2)(x2 + cx + d)
<=> (x + 1)(x - 2)(x2 + 2x + 3) = (x + 1)(x - 2)(x2 + cx + d)
<=> x2 + 2x + 3 = x2 + cx + d
=> c = 2 ; d = 3
Vậy a = -7 ; b = -6 ; c = 2 ; d = 3
Ta có: x4 + x3 + ax + b = (x2 + x - 2)(x2 + cx + d)
<=> x4 + x3 + ax + b = x4 + cx3 + dx2 + x3 + cx2 + dx - 2x2 - 2cx - 2d
<=> x4 + x3 + ax + b = x4 + (c + 1)x3 + (d + c - 2)x2 + (d - 2c)x - 2d
Đồng nhất hệ số:
c + 1 = 1
d + c - 2 = 0
d - 2c = a
-2d = b
<=> c = 0
d = 2 + c = 2
a = d - 2c = 2 - 2.0 = 2
b = -2.2 = -4
Vậy a = d = 2; c = 0; b = -4