K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2022

          \(P\left(x\right)=8x^3\)         +    5x   -1 

       +  \(Q\left(x\right)\)=          \(4x^2\)  -    3x  + 7

       + \(R\left(x\right)=8x^3+8x^2+7x\)

Tổng :            16x^3 + 12x^2 +9x + 6

10 tháng 5 2016

dễ qá .tự làm cho quen đi bn

\(P\left(x\right)-R\left(x\right)=6x^2-3x+2+3x^2-7x+5\)

\(=9x^2-10x+7\)

mà \(P\left(x\right)+R\left(x\right)=-x^2-4x+3\)

nên \(P\left(x\right)=\dfrac{9x^2-10x+7-x^2-4x+3}{2}\)

\(=\dfrac{8x^2-14x+10}{2}=4x^2-7x+5\)

\(R\left(x\right)=9x^2-10x+7-4x^2+7x-5=5x^2-3x+2\)

\(Q\left(x\right)=-3x^2+7x-5-5x^2+3x-2=-8x^2+10x-7\)

18 tháng 7 2018

Cộng 3 đẳng thức vế với vế ta có:

\(2\left(P\left(x\right)+Q\left(x\right)+R\left(x\right)\right)=6x^2-3x+2-3x^2+7x-5-x^2-4x+3\)

=>\(2\left(P\left(x\right)+Q\left(x\right)+R\left(x\right)\right)=2x^2\)

=> \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=x^2\)

=>\(\hept{\begin{cases}R\left(x\right)=x^2-\left(6x^2-3x+2\right)=-5x^2+3x-2\\P\left(x\right)=x^2-\left(-3x^2+7x-5\right)=4x^2-7x+5\\Q\left(x\right)=x^2-\left(-x^2-4x+3\right)=2x^2+4x-3\end{cases}}\)

`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)

`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`

`= 2x^2+3`

 

`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)

`= -x^3+(3x^2-x^2)+(-3x+2x)+2`

`= -x^3+2x^2-x+2`

`P(x)-Q(x)-R(x)=0`

`-> P(X)-Q(x)=R(x)`

`-> R(x)=P(x)-Q(x)`

`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`

`-> R(x)=2x^2+3+x^3-2x^2+x-2`

`= x^3+(2x^2-2x^2)+x+(3-2)`

`= x^3+x+1`

`@`\(\text{dn inactive.}\)

a: P(x)-Q(x)-R(x)=0

=>R(x)=P(x)-Q(x)

=2x^2+3+x^3-2x^2+x-2

=x^3+x+1

23 tháng 4 2017

a) P(x)= 2x^3-2x+x^2+3x+2
P(x)= 2x^3+(-2x+3x)+x^2+2
P(x)= 2x^3+1x+x^2+2

Q(x)=4x^3-3x^2-3x+4x-3x^3+4x^2+1
Q(x)=(4x^3-3x^3)+(-3x^2+4x^2)+(-3x+4x)+1
Q(x)= 1x^3+1x^2+1x+1

b) P(-1)= 2.(-1^3)+1.(-1)+(-1^2)+2
P(-1)= -2+(-1)+1+2
P(-1)= 0
=>x=-1 là nghiệm của P(x)

Q(-1)= 1.(-1^3)+1.(-1^2)+1.(-1)+1
Q(-1)= -1+1+(-1)+1
Q(-1)= 0
=>x=-1 là nghiệm của Q(x)

c) R(x)=P(x)-Q(x)=(2x^3+1x+x^2+2)-(1x^3+1x^2+1x+1)
R(x)=P(x)-Q(x)= 2x^3+1x+1x^2+2-1x^3+1x^2+1x+1
R(x)=P(x)-Q(x)= (2x^3-1x^3)+(1x+1x)+(1x^2+1x^2)+2+1
R(x)=P(x)-Q(x)= 1x^3+2x+2x^2+2+1
=> R(x)=1x^3+2x+2x^2+2+1

ahihi mik ko chắc nha !!!!
có j thì bn kiểm phép tính lại giùm mik vì mik hay quên mấy chỗ đó nha hiha

24 tháng 4 2017

hihi kcj đâu bn

Ta có: \(P\left(x\right)=-2x^4-7x+\frac{1}{2}-3x^4+2x^2-x\)

\(=-5x^4+2x^2-8x+\frac{1}{2}\)

Ta có: \(Q\left(x\right)=3x^3+4x^4-5x^2-x^3-6x+\frac{3}{2}\)

\(=4x^4+2x^3-5x^2-6x+\frac{3}{2}\)

Ta có: R(x)=P(x)-Q(x)

\(=-5x^4+2x^2-8x+\frac{1}{2}-4x^4-2x^3+5x^2+6x-\frac{3}{2}\)

\(=-9x^4-2x^3+7x^2-2x-1\)

Thay x=-1 vào đa thức \(R\left(x\right)=-9x^4-2x^3+7x^2-2x-1\), ta được:

\(R\left(-1\right)=-9\cdot\left(-1\right)^4-2\cdot\left(-1\right)^3+7\cdot\left(-1\right)^2-2\cdot\left(-1\right)-1\)

\(=-9\cdot1+2+7+2-1\)

\(=-9+10=1\)

Vậy: x=-1 không là nghiệm của đa thức R(x)=P(x)-Q(x)

27 tháng 4 2018

a/ P(x)=2x^3-2x+x^2-x^3+3x+2 = x^3+x^2+x+2

Q(x)=4x^3-5x^2+3x-4x+3x^3+4x^2+1=7x^3-x^2-x+1

b/ P(x) + Q(x) = x^3+x^2+x+2 + 7x^3-x^2-x+1 = 8x^3 + 3

P(x) - Q(x) = x^3+x^2+x+2 - (7x^3-x^2-x+1) = -6x^3 + 2x^2+2x+1

c/ P (-1) = (-1)^3+ (-1)^2+ (-1) +2 = 1

Q(2)= 7*2^3-2^2-2+1 = 51

27 tháng 4 2018

a/ P(x)=2x^3-2x+x^?-x^3+3x+2 = x^3

15 tháng 8

A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10

A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10

A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10

A = 0 + (3\(x-3x\)) - 10

A = 0  - 10

A = - 10