Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)
=> \(x^2=6\frac{1}{4}.1,96\)
=> \(x^2=12,25\)
=> \(x^2=\left(\pm3,5\right)^2\)
=> \(x=\pm3,5\)
Vậy \(x\in\left\{3,5;-3,5\right\}\)
\(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)
\(\frac{6,25}{x}=\frac{x}{1,96}\)
\(\Rightarrow6,25.1,96=x^2\)
\(\Rightarrow12.25=x^2\)
\(\Rightarrow\sqrt{12,25}=x=3,5\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=3,5\\x=-3,5\end{array}\right.\)
a. |x-1/5|=|-5/2|-|1/4-2/3|
=> |x-1/5|=5/2-5/12
=> |x-1/5|=25/12
+) x-1/5=25/12
=> x=137/60
+) x-1/5=-25/12
=> x=-113/60
Vậy x \(\in\){-113/60 ; 137/60}
b. (x-0,5).(x2-1,96)=0
+) x-0,5=0
=> x=0,5
+) x2-1,96=0
=> x2=1,96
=> x2=(7/5)2=(-7/5)2
=> x \(\in\left\{-\frac{7}{5};\frac{7}{5}\right\}\)
Vậy \(x\in\left\{-\frac{7}{5};0,5;\frac{7}{5}\right\}\).
c. 5/6 : x = 20 : 3
=> 5/6 : x = 20/3
=> x = 5/6 : 20/3
=> x=1/8
Vậy x=1/8.
Minh Hiền làm đúng rồi tick cho bạn ý đi các bạn ơi ! ( mình ko tick được vì hết lượt rồi )
ĐKXĐ: \(x>=-\dfrac{1.96}{3}=-\dfrac{196}{300}=\dfrac{-49}{75}\)
\(\sqrt{\dfrac{1.96+3x}{4}}=\sqrt{0,04}+\dfrac{1}{4}\cdot\sqrt{\dfrac{256}{25}}\)
=>\(\sqrt{\dfrac{3x+1.96}{4}}=0.2+\dfrac{1}{4}\cdot\dfrac{16}{5}=1\)
=>\(\dfrac{3x+1,96}{4}=1\)
=>3x+1,96=4
=>3x=2,04
=>\(x=\dfrac{2.04}{3}=0.68\left(nhận\right)\)
\(\frac{6+\frac{1}{4}}{x}=\frac{x}{1,96}\)
=> \(x^2=\left(6+\frac{1}{4}\right)x1,96\)
=> \(x^2=\frac{25}{4}x1,96\)
=> \(x^2=12,25\)
=> \(x=3,5\)
Ta có :
\(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)
\(\Leftrightarrow\frac{\frac{25}{4}}{x}=\frac{x}{1,96}\)
\(\Rightarrow x^2=\frac{25}{4}.1,96\)
\(\Leftrightarrow x^2=\frac{49}{4}\)
\(\Leftrightarrow x=\sqrt{\frac{49}{4}}\)
\(\Rightarrow x=\frac{7}{2}\)
P/s tham khảo nha
\(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)
\(\Leftrightarrow x.x=6\frac{1}{4}.1,96\)
\(\Leftrightarrow x^2=12,25\)
\(\Leftrightarrow x^2=3,5^2\)
\(\Leftrightarrow x=3,5\)
Vậy \(x=3,5\)
\(\frac{x}{6,25}=\frac{x}{1,96}\)
\(\Rightarrow\frac{x}{6,25}-\frac{x}{1,96}=0\)
\(\Rightarrow x\left(\frac{1}{6,25}-\frac{1}{1,96}\right)=0\)
\(\Rightarrow x=0\). Do \(\frac{1}{6,25}-\frac{1}{1,96}\ne0\)