K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2023

 Theo bài ra ta có :

      x/5 = y/4 = z/7                              và x+2y+z=10

=>x/5 = 2y/8 = z/7

     Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

x/5 = 2y/8 = z/7 = x+2y+z/5+8+7 = 10/20 =1/2

        x= 5.1/2                x= 5/2

=>   2y=8.1/2         =>   y=2

        z=7.1/2                  z=7/2

                          Vậy .....

25 tháng 10 2019

mk ko hiểu

? là phần đề thiếu bạn nhé, bạn xem lại đề.

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

15 tháng 8 2020

\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)   => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)

=\(\frac{105+9}{16}=\frac{57}{8}\)

b)tương tự câu a

15 tháng 8 2020

a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)

=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)

Lại có 3x - 2y + z = 105

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\) 

                                                                                                                      \(=\frac{105+1}{4}=\frac{106}{4}=26,5\)

=> x = 52 ; y = 77,5 ; z = 104

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)

Lại có x2 - y2 + 2z2 = 108

=> 4k - 9k + 2.16k = 108

=> -5k + 32k = 108

=> 27k = 108

=> k = 4

=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8

Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu

=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

14 tháng 8 2021

Bài 1 : 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)

bài 2 : 

Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

Với k = 1 thì x = 2 ; y = 5

Với k = - 1 thì x = -2 ; y = -5

2 tháng 9 2017

mình chỉ làm 1 phần thui nhé,lười lắm

x/2=y/3=>3x=2y

=>x=15:(3-2).2=30

y=30+15 =45

2 tháng 9 2017

bn phúc ơi giúp mk hết đi mk sẽ tk thật nhìu cho bn