Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hai gọc so le trong là 2 góc ở vị trí so le trong
2 góc này đc tạo bởi 2 đường thẳng song song và đường thẳng thứ 3 cắt 2 đường thẳng đó
như thế này nè
cái tròn đó là vị trí 2 góc so le trong
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
\(\frac{x}{6}=\frac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{x-y}{6-9}=\frac{30}{-3}=-10\)
\(\Rightarrow\frac{x}{6}=-10\Rightarrow x=-60\)
\(\frac{y}{9}=-10\Rightarrow y=-90\)
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
a) \(2x=3y\Rightarrow x=\frac{3}{2}y\) hay \(y=\frac{2}{3}x\)
Thay \(x=\frac{3}{2}y\)vào, tA được:
\(3.\left(\frac{3}{2}y\right)+5y=19\)
\(\Leftrightarrow\frac{9}{2}y+5y=19\)
\(\Leftrightarrow y.\left(\frac{9}{2}+5\right)=19\)
\(\Leftrightarrow y.\frac{19}{2}=19\)
\(\Rightarrow y=19:\frac{19}{2}=2\)
\(\Rightarrow x=\frac{3}{2}.2=3\)
Vậy \(\hept{\begin{cases}x=3\\y=2\end{cases}.}\)
b) \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng công thúc dãy tỉ số bằng nhau ta được:
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)
\(\Rightarrow\hept{\begin{cases}x=5.3=15\\y=5.5=25\\z=5.6=30\end{cases}}\)
Vậy \(\hept{\begin{cases}x=15\\y=25\\z=30\end{cases}.}\)
ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{3x}{9}=\frac{5y}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{9}=\frac{5y}{10}=\frac{3x+5y}{10+9}=\frac{19}{19}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{3x}{9}=1\\\frac{5y}{10}\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(x=3;y=2\)
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{10}{2}=5\)
\(\Rightarrow\frac{x}{3}=5\Rightarrow x=15\)
\(\frac{y}{5}=5\Rightarrow y=25\)
\(\frac{z}{6}=5\Rightarrow z=30\)
Vậy \(x=15;y=25;z=30\)
a, áp dụng t/c dtsbn ta có:
\(\dfrac{x}{-10}=\dfrac{y}{6}=\dfrac{2x-3y}{2.\left(-10\right)-3.6}-\dfrac{76}{-38}=-2\)
\(\dfrac{x}{-10}=-2\Rightarrow x=20\\ \dfrac{y}{6}=-2\Rightarrow y=-12\)
b, áp dụng t/c dtsbn ta có:
\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{2x+5y}{2.4+5.5}=\dfrac{66}{33}=2\)
\(\dfrac{x}{4}=2\Rightarrow x=8\\ \dfrac{y}{5}=2\Rightarrow y=10\)
\(a,\dfrac{x}{-10}=\dfrac{y}{6}=\dfrac{2x-3y}{-20-18}=\dfrac{76}{-38}=-2\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=-12\end{matrix}\right.\\ b,\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{2x+5y}{8+25}=\dfrac{66}{33}=2\\ \Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
x/5=y/6 và y-2x=-10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{y-2x}{6-5\cdot2}=\dfrac{-10}{-4}=2,5\)
\(\left\{{}\begin{matrix}x=2,5\cdot5=12,5\\y=2,5\cdot6=15\end{matrix}\right.\)
Vậy x=12,5 và y=15
x/5=y/6 và y-2x=-10
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/5=y/6=y-2x/6-10=-10/-4=2,5
=>x/5=2,5=>x=2,5⋅5=12,5
=>y/6=2,5=>y=2,5X6=15