Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x/y = 5/7
=> x/5 = y/7 và x + y = 4.08
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
x/5 = y/7 = x+y/5+7 = 4.08/12 = 0.34
=> x/5 = 0.34 => x = 0.34 x 5 = 1.7
y/7 = 0.34 => y = 0.34 x 7 = 2.38
Vậy x = 1.7 ; y = 2.38
HOk tốt!!!!!!!!!!!!!
Theo bài ra ta có:\(\frac{x}{y}=\frac{5}{7}\Leftrightarrow\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)
Do đó: x=0,34.5=1,7
y=0,34.7=2,38
Vậy x=1,7 và y=2,38
a, \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7};x+y-7=60\)
\(\Rightarrow\frac{x}{5.8}=\frac{y}{6.8};\frac{y}{8.6}=\frac{z}{7.6};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{48}=\frac{z}{42};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42};x+y=67\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{40}=\frac{y}{48}=\frac{x+y}{40+48}=\frac{67}{88}\)
Tính nốt nha
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-16\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{1}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}=\frac{x^2-y^2}{64-144}=-\frac{16}{-80}=\frac{1}{5}\)
Suy ra \(\frac{x^2}{64}=\frac{1}{5}\Rightarrow x=\frac{32}{5}\)
\(\frac{y^2}{144}=\frac{1}{5}\Rightarrow y=\frac{72}{5}\)
\(\frac{z}{15}=\frac{1}{5}\Rightarrow z=3\)
Vậy \(x=\frac{32}{5};y=\frac{72}{5};z=3\)
Chúc bạn học tốt !!!
Ta có:4x=-7y ⇒⇒x−7=y4x−7=y4⇒⇒2x−14=3y122x−14=3y12
Theo tính chất của dãy tỉ số bằng nhau ta có:
2x−14=3y12=2x−3y−14−12=−78−26=32x−14=3y12=2x−3y−14−12=−78−26=3
2x−14=3⇒2x=3×(−14)=−42⇒x=−42÷2=−212x−14=3⇒2x=3×(−14)=−42⇒x=−42÷2=−21
3y12=3⇒3y=12×3=36⇒y=36÷3=123y12=3⇒3y=12×3=36⇒y=36÷3=12
Vậy x=-21,y=12
Từ \(\frac{x}{y}=\frac{3}{4}\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{-78}{26}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=-3\\\frac{y}{4}=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-9\\y=-12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{y-z}{6-7}=\dfrac{39}{-1}=-39\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-39\right).5=-195\\y=\left(-39\right).6=-234\\z=\left(-39\right).7=-273\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{y-z}{6-7}=\dfrac{39}{-1}=-39\)
Do đó: x=-195; y=-234; z=-273
1)
Ta có:
\(2x=3y=4z\Leftrightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x-y-z}{\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}}=-420\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-420.\dfrac{1}{2}=-210\\y=-420.\dfrac{1}{3}=-140\\z=-420.\dfrac{1}{4}=-105\end{matrix}\right.\)
Vậy....
x/5=y/4
áp dụng tính chất dãy tỉ số bằng nha ta có:
x/5=y/4=x+y/5+4=27/9=3
=>x/5=3 =>x=15
=>y/4=3 =>y=12
\(\frac{x}{3}=\frac{y}{4}\)và \(2x+5y=10\)
\(\Rightarrow\frac{2x}{6}=\frac{5y}{20}\)và \(2x+5y=10\)
áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{5}{13}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2x}{6}=\frac{5}{13}\\\frac{4y}{20}=\frac{5}{13}\end{cases}\Rightarrow\hept{\begin{cases}\frac{15}{13}\\\frac{25}{13}\end{cases}}}\)
\(KL\)
B1 :
\(\frac{x}{3}=\frac{y}{6}=\frac{xy}{3\times6}=\frac{162}{18}=9\)
---> x = 3.9 = 27
---> y = 6.9 = 54
B2 :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{xyz}{2\times3\times5}=\frac{-240}{30}=-8\)
---> x = -8.2 = -16
---> y = -8.3 = -24
---> z = -8.5 = -40
xin tiick
Đặt: \(\dfrac{x}{4}=\dfrac{y}{7}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=4k\\y=7k\end{matrix}\right.\)
Ta có: \(xy=112\Rightarrow4k\cdot7k=112\)
\(\Rightarrow28k^2=112\)
\(\Rightarrow k^2=4\)
\(\Rightarrow\left[{}\begin{matrix}k=-2\\k=2\end{matrix}\right.\)
Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot-2=-8\\y=7\cdot-2=-14\end{matrix}\right.\)
Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=7\cdot2=14\end{matrix}\right.\)