Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2017x2 ≥ 0
⇒ 2017x2 + 2018 > 0
Nên (2017x2 + 2018)(2x - 1) ≥ (2017x2 + 2018)(4 - 5x)
⇔ 2x - 1 ≥ 4 - 5x ( chia cho số dương nên bất phương trình không đổi chiều)
⇔ 2x + 5x ≥ 4 + 1
⇔7x ≥ 5
⇔ x ≥ \(\frac{5}{7}\)
Vậy nghiệm của phương trình là x ≥ \(\frac{5}{7}\)
\(x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=x^4-x+2018x^2+2018x+2018\)
\(=x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2018\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
\(A=x^3+2x^2+3x\\ =x\left(x^2+2x+1\right)\\ =x\left(x+1\right)^2\\ =1999.\left(1999+1\right)=1999.2000\\ =3998000\)
\(B=x^4-2017x^3+2017x^2-2017x+2018\\ =x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2016+2\\ =x^3\left(x-2016\right)-x^3\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+2\\ =\left(x-2016\right)\left(x^3+x-1\right)+2=0+2=0\)
Bạn xem lại đề câu a nhé , theo mk thì phải là 2 thì tính ms nhanh đc, 3 thì cũng giải đc nhưng ko hợp lí lắm
x^4+2018x^2−2017x+2018
=(x^4+x)+(2018x^2−2018x+2018)
=x(x^3+1)+2018(x^2−x+1)
=x(x+1)(x^2−x+1)+2018(x^2−x+1)
=(x^2−x+1)[x(x+1)+2018]
=(x^2−x+1)(x^2+x+2018)
=(x^2−x+1)(x^2+x+2018)
BPT\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1\right)-\left(2017x^2+2018\right)\left(4-5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(2x-1-4+5x\right)\ge0\)
\(\Leftrightarrow\left(2017x^2+2018\right)\left(7x-5\right)\ge0\)
DO 2017x2+2018 luôn luôn lớn hơn 0
ĐỂ B PT \(\ge\)0\(\Leftrightarrow7x-5\ge0\)
\(\Leftrightarrow x\ge\frac{5}{7}\)
vậy ...........
\(\text{a) }4x^{16}+81=4x^4+36x^2+81-36x^8\)
\(=\left(4x^{16}+36x^8+81\right)-36x^8\)
\(=\left[\left(2x^8\right)^2+2.2x^8.9+9^2\right]+\left(6x^4\right)^2\)
\(=\left(2x^8+9\right)^2-\left(6x^4\right)^2\)
\(=\left(2x^8+9-6x^4\right)\left(2x^8+9+6x^4\right)\)
\(\text{b) }x^4+2018x^2+2017x+2018\)
\(=x^4+2018x^2+2018x-x+2018\)
\(=\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(=x\left(x^3-1\right)-2018\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2-x\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
\(x^4+2018x^2+2017x+2018\)
\(\Rightarrow x^4+2018x^2+2018x-x+2018\)
\(\Rightarrow\left(x^4-x\right)+\left(2018x^2+2018x+2018\right)\)
\(\Rightarrow x\left(x^3-1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow x\left(x-1\right)\left(x^2+x+1\right)+2018\left(x^2+x+1\right)\)
\(\Rightarrow\left(x^2+x+1\right)\left(x^2-x+2018\right)\)
x4+2018x2+2017x+2018=x4+2018x2+2018x-x+2018
=x(x3-1)+2018(x2+x+1)=(x2+x+1)(x2-x+2018)
Ktra xem mk có nhầm chỗ nào ko nhé. Cảm ơn bạn
x^4+2018x^2+2017x+2018
=(x^4-x)+(2018x^2+2018x+2018)
=x(x^3-1)+2018(x^2+x+1)
=x(x-1)(x^2+x+1)+2018(x^2+x+1)
=(x^2+x+1)(x^2-x+2018)