K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Ta có: \(\left(\frac{x+4}{2000}\right)+\left(\frac{x+3}{2001}\right)=\left(\frac{x+2}{2002}\right)+\left(\frac{x+1}{2003}\right)\)

\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}\right)=0\)

Vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}\ne0\)

=> x + 2004 =0

=> x             = -2004

15 tháng 8 2018

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

<=>  \(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

<=>  \(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

<=>  \(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

<=>  \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

<=>  \(x+2004=0\)  (do  1/2000 + 1/2001 - 1/2002 - 1/2003 khác 0)

<=>   \(x=-2004\)

\(\dfrac{x+4}{2000}\) + \(\dfrac{x+3}{2001}\) =\(\dfrac{x+2}{2002}\) + \(\dfrac{x+1}{2003}\)


<=> \(\dfrac{x+4}{2000}\) + 1 + \(\dfrac{x+3}{2001}\) +1 = \(\dfrac{x+2}{2002}\) + 1 + \(\dfrac{x+1}{2003}\) + 1

<=>\(\dfrac{x+4}{2000}\)+\(\dfrac{2000}{2000}\)+\(\dfrac{x+3}{2001}\) \(\dfrac{2001}{2001}\) = \(\dfrac{x+2}{2002}\)+\(\dfrac{2002}{2002}\)+\(\dfrac{x+1}{2003}\)+\(\dfrac{2003}{2003}\)


<=> \(\dfrac{x+4+2000}{2000}\)+\(\dfrac{x+3+2001}{2001}\) = \(\dfrac{x+2+2002}{2002}\)+ \(\dfrac{x+1+2003}{2003}\)


<=> \(\dfrac{x+2004}{2000}\) + \(\dfrac{x+2004}{2001}\) - \(\dfrac{x+2004}{2002}\) - \(\dfrac{x+2004}{2003}\) = 0


<=> (x+2004)(\(\dfrac{1}{2000}\) + \(\dfrac{1}{2001}\) - \(\dfrac{1}{2002}\) -\(\dfrac{1}{2003}\)) = 0


\(\dfrac{1}{2000}\) + \(\dfrac{1}{2001}\) - \(\dfrac{1}{2002}\) - \(\dfrac{1}{2003}\) khác 0


nên x+2004=0

=>x=0-2004
=> x = -2004
vậy S = -2004.

Tick nhabanhqua

15 tháng 9 2016

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Có: \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\)

\(\Rightarrow x=-2004\)

15 tháng 9 2016

\(frac{x+4}{2000}\)

16 tháng 1 2020

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+3}{2001}+1\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

có 1/2000 + 1/2001 - 1/2002 - 1/2003

=> x + 2004 = 0

=> x = -2004

\(\frac{x+4}{2000}+\frac{x+3}{2001}+\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)

\(\Leftrightarrow x=-2004\)

13 tháng 9 2017


\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\)\(\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)\)\(=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2004}{2000}\right)+\left(\frac{x+2004}{2001}\right)\)\(=\left(\frac{x+2004}{2002}\right)+\left(\frac{x+2004}{2003}\right)\)
\(\Leftrightarrow\left(x+2004\right)\)\(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)\(=0\)

\(\Leftrightarrow x+2004=0\)
\(\Leftrightarrow x=-2004\)

20 tháng 10 2019

ê cái thằng nguyễn xuân toàn kia có phải câu hỏi linh tinh đâu mà nói nhiều

22 tháng 1 2019

Sửa lại đề : Tìm x biết : \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\Rightarrow\frac{x+4+2000}{2000}+\frac{x+3+2001}{2001}=\frac{x+2+2002}{2002}+\frac{x+1+2003}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2014}{2002}-\frac{x+2004}{2003}=0\)

\(\Rightarrow\left(x+2004\right)\left[\left(\frac{1}{2000}+\frac{1}{2001}\right)-\left(\frac{1}{2002}+\frac{1}{2003}\right)\right]=0\)

Mà : \(\frac{1}{2000}+\frac{1}{2001}>\frac{1}{2002}+\frac{1}{2003}\)

\(\Rightarrow x+2004=0\Rightarrow x=\left(-2004\right)\)