Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x+3< 0\)
\(=>x+5;x+9\)cùng dấu
Ta có 2 trường hợp:
\(TH1:\hept{\begin{cases}x+5>0\\x+9>0\end{cases}}\)
\(=>\hept{\begin{cases}x>-5\\x>-9\end{cases}}\)
\(=>x>-5\)
\(TH2:\hept{\begin{cases}x+5< 0\\x+9< 0\end{cases}}\)
\(=>\hept{\begin{cases}x< -5\\x< -9\end{cases}}\)
\(=>x=-9\)
VẬY : x= - 5 HOẶC x= - 9
1) \(2x^4+3x^3-x^2+3x+2=0\)
\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)
\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)
\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)
Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x
\(\Rightarrow x^2-x+1\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)
3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)
Đặt x + 3 = a, ta được
\(\left(a-1\right)^4+\left(a+1\right)^4=16\)
\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)
\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)
\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)
\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)
\(\Rightarrow2a^4+8a^2+4a^2+2=16\)
\(\Rightarrow2a^4+12a^2+2-16=0\)
\(\Rightarrow2a^4+12a^2-14=0\)
\(\Rightarrow2a^4-2a^2+14a^2-14=0\)
\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)
\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)
Vì \(a^2\ge0\) với mọi a
\(\Rightarrow a^2+7\ge7\) với mọi a
\(\Rightarrow a^2+7\) vô nghiệm
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
A/ \(2\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=3\end{matrix}\right.\)
KL:...........
B/ \(\left(x-1\right)^2\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
KL:..................
C/ \(\left(\frac{2x}{3}+4\right)\left(2x-3\right)\left(\frac{x}{2}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{3}+4=0\\2x-3=0\\\frac{x}{2}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\frac{3}{2}\\x=2\end{matrix}\right.\)
KL:.....................
Tatsuya Yuuki( Team Megin Kawakuchi)
người ta đã dăng câu hỏi lên để mn giúp vì bán đấy k làm đc, mà mày tự nhiên nhảy vào bảo tự làm. Nếu mày đăng câu hỏi lên mà mn bảo m tự làm thì mày cảm thấy thế nào
A. 2x (3x-2) - (3x-2)=0
➜\(\left(2x-1\right)\left(3x-2\right)=0\)
➜\(\left[{}\begin{matrix}2x-1=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...................................
B. (x+1) (3-x) +x=0
➜\(3x-x^2+3-x+x=0\)
➜\(3x-x^2=0\)
➜\(x\left(3-x\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy.........................V
C. (x-2)^2 = (2x+3)^2
➞\(\left(x-2\right)^2-\left(2x+3\right)^2=0\)
➜\(\left(x-2-2x-3\right)\left(x-2+2x+3\right)=0\)
➜\(\left[{}\begin{matrix}x-2-2x-3=0\\x-2+2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy..................................
D. x^2 -5x+6=0
➜\(x^2-2x-3x+6=0\)
➜\(x\left(x-2\right)-3\left(x-2\right)=0\)
➜\(\left(x-3\right)\left(x-2\right)=0\)
➜\(\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy.....................................
\(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^2+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x-4\right)\left(x+4\right)+3x^2\)\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)+3\left(x^2-4x+4\right)=x^2+2x+1-\left(x^2-4^2\right)+3x^2\)\(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+12=x^2+2x+1-x^2+16+3x^2\)
\(\Leftrightarrow-20x=39\)
\(\Leftrightarrow x=\frac{-39}{20}\)
Vậy \(x=\frac{-39}{20}\)
phá ngoặc rồi giải?
(x3 + x2) + (x2 + x) = 0
<=> x3 + x2 + x2 + x = 0
<=> x3 + 2x2 + x = 0
<=> x(x + 1)(x + 1) = 0
<=> x = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = -1