Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(M=\left|x+13\right|+64\)
Vì \(\left|x+3\right|\ge0\)
=> \(\left|x+3\right|+64\ge64\)
Vậy GTNN của M là 64 khi x=-13
\(A=\left|x+3\right|+\left|x+5\right|=\left|-\left(x+3\right)\right|+\left|x+5\right|\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(A\ge\left|-x-3+x+5\right|=2\)
Vaayj GTNN của A là 2 khi \(-3\le x\le5\)
Bài 2:
a) \(\left(x+10\right)^2=0\)
\(\Leftrightarrow x+10=0\Leftrightarrow x=-10\)
b) \(\left(x-\sqrt{121}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-\sqrt{121}=0\) (vì \(x^2+1>0\) )
\(\Leftrightarrow x=11\)
Bài 1:
a)Ta thấy: \(\left|x+13\right|\ge0\)
\(\Rightarrow\left|x+13\right|+64\ge64\)
\(\Rightarrow M\ge64\)
Dấu = khi x=-13
b)\(\left|x+3\right|+\left|x+5\right|=\left|x+3\right|+\left|-x-5\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x+3\right|+\left|-x-5\right|\ge\left|x+3+\left(-x\right)-5\right|=2\)
\(\Rightarrow A\ge2\)
Dấu = khi \(\left(x+3\right)\left(x+5\right)\ge0\)\(\Rightarrow3\le x\le5\)
\(\Rightarrow\begin{cases}\left(x+3\right)\left(x+5\right)=0\\3\le x\le5\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=-3\\x=-5\end{cases}\)
Vậy MinA=2 khi \(\begin{cases}x=-3\\x=-5\end{cases}\)
9x2 - 4 - ( 3x - 2 )( x + 5 ) = 0
<=> ( 3x - 2 )( 3x + 2 ) - ( 3x - 2 )( x + 5 ) = 0
<=> ( 3x - 2 )( 3x + 2 - x - 5 ) = 0
<=> ( 3x - 2 )( 2x - 3 ) = 0
<=> \(\orbr{\begin{cases}3x-2=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)
x3 + 64 + ( x + 4 )( 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 4x + 16 ) + ( x + 4 )( 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 4x + 16 + 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 2x + 13 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x^2-2x+13=0\end{cases}}\Leftrightarrow x=-4\)( vì x2 - 2x + 13 = ( x2 - 2x + 1 ) + 12 = ( x - 1 )2 + 12 ≥ 12 > 0 ∀ x )
( x - 3 )( x2 + 4x + 9 ) + 2( x2 - 9 ) - 10( x - 3 ) = 0
<=> ( x - 3 )( x2 + 4x + 9 ) + 2( x - 3 )( x + 3 ) - 10( x - 3 ) = 0
<=> ( x - 3 )( x2 + 4x + 9 + 2x + 6 - 10 ) = 0
<=> ( x - 3 )( x2 + 6x + 5 ) = 0
<=> ( x - 3 )( x + 1 )( x + 5 ) = 0
<=> x = 3 hoặc x = -1 hoặc x = -5
<=> ( x - 3 )(
a/ => x3 = 64 => x3 = 43 => x = 4
b/ => 4x2 - 12x + 9 - x2 - 10x - 25 = 0
=> 3x2 - 22x - 16 = 0
=> (x - 8)(3x + 2) = 0
=> x - 8 = 0 => x = 8
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
Vậy x = 8 ; x = -2/3
c/ => x3 - x2 - 4x2 + 8x - 4 = 0
=> x3 - 5x2 + 8x - 4 = 0
=> (x - 2)2 (x - 1) = 0
=> (x - 2)2 = 0 => x - 2 = 0 => x = 2
hoặc x - 1 = 0 => x = 1
Vậy x = 2 ; x = 1
x^3+ 64= 0
x^3 = -64
x^3 = (-4)^3
x=-4
x3 + 64 = 0
x3= 0+64
x3 = 64
x3= 43
=> x=4