K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2023

\(x^3-3x^2y+3xy^2-y^3\)

\(=\left(x-y\right)^3\)

Thay \(x=88\) và \(y=-12\) vào biểu thức trên, ta được:

\(\left[88-\left(-12\right)\right]^3\)

\(=\left(88+12\right)^3\)

\(=100^3\)

\(=1000000\)

#Urushi

23 tháng 7 2018

Bài 2:

\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)

\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)

23 tháng 7 2018

Bài 1:

a)  \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)

b)  \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)

c)  \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)

d)  \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

11 tháng 7 2017

c)\(x^3+3xy+y^3\)

\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2\)

\(=1^2=1\)

11 tháng 7 2017

d) \(x^3-3xy-y^3\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=\left(x^2+xy+y^2\right)-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1^2=1\)

@Đoàn Đức Hiếu lm a,b đi nhé

25 tháng 12 2018

a) ( 2x +3)2 + (2x-3)2 + (2x+3)(4x-6) + xy

= (2x+3)2 + 2(2x+3)(2x-3) + xy

= \([\) (2x+3) + (2x-3) \(]\)2 + xy

= (4x)2 + xy = 16x2 + xy = x(16 + y)

b) x2 + x - y2 + y

= (x2 - y2 ) + ( x + y )

= (x+y)(x-y) + (x+y)

= (x+y)(x-y+1)

c) 3x2 + 3y2 - 6xy - 12

= 3(x2 + y2 - 2xy - 4)

= 3[ (x-y)2 -22 ] = 3(x-y-2)(x-y+2)

d) x3 -x + 3x2y + 3xy2 -y + y3

= ( x3 + 3x2y + 3xy2 + y3 ) - (x + y)

= (x+y)3 - (x+y)

= (x+y)[ (x+y)2 - 1 ] = (x+y)(x+y-1)(x+y+1)

e) 2018x2 - 2019x + 1 = 0

=> 2018x2 - 2018x - x + 1 = 0

=> 2018x(x-1) - (x-1) = 0

=> (x-1)(2018x-1) = 0

=> \(\left[{}\begin{matrix}x-1=0\\2018x-1=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2018}\end{matrix}\right.\)

5 tháng 8 2017

Câu bc mình ghi nhầm nên dừng làm

5 tháng 8 2017

kết bạn với mình đi

13 tháng 12 2017

a)  x2 - x - 12 

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

b) x3 - y3 - 3x2 + 3x - 1

= (x3 - 3x2 + 3x - 1) - y3

= (x - 1)3 - y3

= (x - 1 - y) [ (x - 1)2 + (x - 1)y + y2 ]

= (x - y - 1)(x2 - 2x + 1 + xy - y + y2 )

d) 4x3 - 5x2 - 16x + 20

= (4x3 - 8x2) + (3x2 - 6x) - (10x - 20)

= 4x2 (x - 2) + 3x(x - 2) - 10(x - 2)

= (x - 2)(4x2 + 3x - 10)

= (x - 2)(4x2 + 8x - 5x - 10)

= (x - 2)(x + 2)(4x - 5)

a: A=2/3x^2y+4x^2y=14/3x^2y

=14/3*9*7=294

b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16

c: C=x^3y^3(2+10-20)=-8x^3y^3

=-8*1^3(-1)^3=8

d: D=xy^2(2018+16-2016)

=18xy^2

=18(-2)*1/9=-4

AH
Akai Haruma
Giáo viên
17 tháng 9 2023

Lời giải:

a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$

$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.

$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$

$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$

d. 

$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$

$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$

$=-x^2y+4x^2-2xy^2-10x$

$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$