K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=-\frac{20}{-4}=5\)

Nên : \(\frac{x}{2}=5\Rightarrow x=10\)

         \(\frac{y}{3}=5\Rightarrow y=15\)

         \(\frac{z}{4}=5\Rightarrow z=20\)

Vậy ............................

14 tháng 7 2017

ta có : x/2 = y/3 = z/4  

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x/2= y/3 = z/4 = x+2y-3z/ 2+2.3-3.4 =-20/-4 =5

Từ x/2 = 5 => x = 2.5 = 10

y/3 = 5 => y=3 .5 = 15

z/4 = 5 => z= 5.4 = 20

27 tháng 12 2015

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=-\frac{20}{-4}=5\)

x=10

y=15

z=20

14 tháng 7 2017

ad tc cua day ti so = nhau ta co

5 tháng 8 2016

có \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=>\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)

=> \(x=2.5=10,2y=6.5=30,3z=12.5=60\)

=>\(x=10,y=15,z=20\)

14 tháng 7 2019

\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[\left(-3,2\right)+\frac{2}{5}\right]\)

\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[-\frac{3}{2}+\frac{2}{5}\right]\)

\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=-\frac{11}{10}\)

\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{11}{10}-\frac{4}{5}\)

\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{19}{10}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{19}{10}\\x-\frac{1}{3}=-\frac{19}{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{67}{30}\\x=-\frac{47}{30}\end{cases}}\)

14 tháng 7 2019

Bạn ơi còn b,c nữa 

5 tháng 8 2016

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{3}=\frac{2y}{6}=\frac{2z}{9}\)

Áp ụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{x}{3}=\frac{2y}{6}=\frac{3z}{9}=\frac{x+2y-3z}{3+6-9}=-\frac{20}{0}\)

Vô nghĩa

=> Đề sai

5 tháng 8 2016

bn ơi,đề đúng đấy ạ,tớ cx làm đc r nha

15 tháng 10 2016

Có :

\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)

\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)

\(\Rightarrow x,y,z\)cùng dấu

Lại có : \(\Rightarrow\frac{x^2}{36}=\frac{y^2}{225}=\frac{z^2}{16}=\left(\frac{x}{6}\right)\left(\frac{y}{15}\right)=\frac{xy}{6.15}=\frac{90}{90}=1\)

\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

\(\frac{y^2}{225}=1\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{16}=1\Rightarrow z^2=16\Rightarrow\orbr{\begin{cases}z=4\\z=-4\end{cases}}\)

Mà \(x,y,z\)cùng dấu

\(\Rightarrow\orbr{\begin{cases}x=6;y=15;z=4\\x=-6;y=-15;z=-4\end{cases}}\)

Vậy ...

15 tháng 10 2016

Giải:
Ta có: 5x = 2y => x/2 = y/5 => x/6 = y/15

2x = 3z => x/3 = z/2 => x/6 = z/4

=> x/6 = y/15 = z/4

Đặt x/6 = y/15 = z/4 = k

=> x = 6k, y = 15k, z = 4k

Mà xy = 90

=> 6.k.15.k = 90

=> 90.k2 = 90

=> k2 = 1

=> k = 1 hoặc k = -1

+) k = 1 => x = 6, y = 15, z = 4

+) k = -1 => x = -6, y = -15, z = -4

Vậy x = 6, y = 15, z = 4 hoặc x = -6, y = -15, z = -4

15 tháng 7 2016

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng dãy tỉ số bằng nhau :

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=\frac{-20}{-4}=5\)

\(\Rightarrow x=2.5=10\)

\(\Rightarrow y=3.5=15\)

\(\Rightarrow z=4.5=20\)

15 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}\)= 5

=> x = 5.2 = 10 ; y = 5.3 = 15 ; z = 5.4 = 20

Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

áp đụng t/c dãy tỉ số = nhau ta dc :

  \(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{15}=\frac{x+2y-3z}{3+8-15}=\frac{20}{-4}=-5\)

\(=>x=-5.3=-15\)

\(=>y=-5.-4=20\)

\(=>z=-5.5=-25\)

10 tháng 7 2016

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{15}=\frac{x+2y-3z}{3+8-15}=\frac{20}{-4}=-5\)

=> x = -5 . 3 = -15

     y = -5 . 4 = -20

     z = -5 . 5 = -25