Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
a ) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x+z=18\)
Áp dụng t/c dãy tỏ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
b ) \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\) và \(y-x=39\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{y-x}{-6-5}=\frac{39}{-11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{39}{-11}\\\frac{y}{-6}=\frac{39}{-11}\\\frac{z}{7}=\frac{39}{-11}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{195}{11}\\y=-\frac{234}{11}\\z=\frac{273}{11}\end{cases}}\)
Ta có:
\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}\) (1)
\(\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{25}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{25}\)
Áp dụng tính chất dãy số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{25}=\dfrac{2x-y+4z}{2\cdot20-10+4\cdot25}=\dfrac{270}{130}=\dfrac{27}{13}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{27}{13}\Rightarrow x=\dfrac{540}{13}\)
\(\Rightarrow\dfrac{y}{10}=\dfrac{27}{13}\Rightarrow y=\dfrac{270}{13}\)
\(\Rightarrow\dfrac{z}{25}=\dfrac{27}{13}=\dfrac{675}{13}\)
Có: \(\dfrac{x}{10}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{10}=\dfrac{2y}{10}\left(1\right)\)
\(\dfrac{y}{2}=\dfrac{z}{3}\Leftrightarrow\dfrac{2y}{10}=\dfrac{2z}{15}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{x}{10}=\dfrac{2y}{10}=\dfrac{2z}{15}\)=> \(\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{2z}{15}\)
Áp dung tính chất của dãy tỉ số bằng nhau và 2x - y + 4z = 270, ta có:
\(\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{2z}{15}=\dfrac{2x}{20}=\dfrac{4z}{30}=\dfrac{2x-y+4z}{20-5+30}=\dfrac{270}{45}=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=6\\\dfrac{y}{5}=6\\\dfrac{2z}{15}=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=30\\z=45\end{matrix}\right.\)
Vậy...
Áp dụng dãy tỉ số bằng nhau ta có:
`x/2=y/3=x/4 = (x+y+z)/(2+3+4)=270/9=30`
\(\left\{{}\begin{matrix}x=2.30=60\\y=3.30=90\\z=4.30=120\end{matrix}\right.\)
áp dụng tính chất dãy tỉ số bằng nhau ta có :
x/2 = y/3 = x/4 = x+y+z/2+3+4 = 270/9 = 30
=> x = 30 . 2 = 60
y = 30 . 3 = 90
z = 30 . 4 = 120
vậy x = 60 ; y = 90 ; z = 120