K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

dùng bđt bunhiacopski thôi

hoặc pt \(\left(x+2y\right)^2=\left(x\cdot1+\sqrt{2}y\cdot\sqrt{2}\right)^2\)

6 tháng 5 2016

Ta có: x+2y=1

=> x=1-2y

Thay x=1-2y vào biểu thức A

Ta có: A=(1-2y)2+2y2

A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2

Vậy min A = 0 <=> x=1/2 và y=1/4

6 tháng 5 2016

tính x theo y thế vào A tìm GTNN bằng HĐT

26 tháng 3 2018

\(G=x^2-2xy+2y^2+2x-10y+17\\ \\ =x^2-2xy+y^2+y^2+2x-2y-8y+1+16\\ \\ =\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\\ \\ =\left(x-y+1\right)^2+\left(y-4\right)^2\)

Do \(\left(x-y+1\right)^2\ge0\forall x;y\)

\(\left(y-4\right)^2\ge0\forall y\)

\(\Rightarrow G=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

Vậy \(G_{\left(Min\right)}=0\) khi \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)

26 tháng 3 2018

\(H=x^2+2xy+y^2-2x-2y\\ =x^2+2xy+y^2-2x-2y+1-1\\ =\left(x^2+y^2+1+2xy-2x-2y\right)-1\\ \\ =\left(x+y-1\right)^2-1\)

Do \(\left(x+y-1\right)^2\ge0\forall x;y\)

\(\Rightarrow H=\left(x+y-1\right)^2-1\ge-1\forall x;y\)

Dấu \("="\) xảy ra khi:

\(\left(x+y-1\right)^2=0\\ \Leftrightarrow x+y-1=0\\ \Leftrightarrow x+y=1\)

Vậy \(H_{\left(Min\right)}=-1\) khi \(x+y=1\)

24 tháng 7 2017

Typo ? i think it \(A=\left(x+1000\right)^2+2y^2-8y\)

\(=\left(x+1000\right)^2+2y^2-8y+8-8\)

\(=\left(x+1000\right)^2+2\left(y^2-4y+4\right)-8\)

\(=\left(x+1000\right)^2+2\left(y-2\right)^2-8\)

Dễ thấy; \(\left(x+1000\right)^2\ge0;2\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x+1000\right)^2+2\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x+1000\right)^2+2\left(y-2\right)^2-8\ge-8\)

Xảy ra khi \(\left(x+1000\right)^2=0;2\left(y-2\right)^2=0\Rightarrow\hept{\begin{cases}x=-1000\\y=2\end{cases}}\)

14 tháng 12 2016

Nguồn : diendantoanhoc.net

Áp dụng BĐT Cauchy Schwarz có :

\(\left(x^2+2y^2\right)\left(1+2\right)\ge\left(x+2y\right)^2=1\)

\(\Rightarrow x^2+2y^2\ge\frac{1}{3}\)

Vậy ...

19 tháng 5 2016

Ta có: x + 2y = 1 <=> x = 1 - 2y. 

Thay vào P ta có: 

P = (1 - 2y)2 + 2y2 = (1- 4y +4y2) + 2y2 = 6y2 - 4y+1 = 6(y2 - 2.1/3.y +1/9) + 1/3 = 6(y - 1/3)2 + 1/3 >= 1/3

Vậy P nhỏ nhất = 1/3 khi và chỉ khi 6(y - 1/3)2 = 0 <=> y - 1/3 = 0 <=> y = 1/3, x = 1 -2y = 1 - 2/3 = 1/3

Vậy P nhỏ nhất = 1/3 khi x = 1/3, y = 1/3

12 tháng 7 2023

Mày nhìn cái chóa j

18 tháng 5 2016

ta có x2+2y2=x2+y2+y2

áp dụng bất đẳng thức bunhia copxki ta có

(12+12+12)(x2+y2+y2) >hoặc=(x+y+y)2

3(x2+2y2) > hoặc = (x+2y)2

3(x2+2y2) > hoặc = 12 

3(x2+2y2) > hoặc = 1

x2+2y> hoặc = 1/3 

vậy gtnn của x2+2ylà 1/3

19 tháng 5 2016

bài này rất nhìu cách giải mk sẽ gửi từng cách mk biết lên 1 chờ nhé ^^

19 tháng 5 2016

à mà bài này thiếu điều kiện của x,y