Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x\cdot\dfrac{1}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{32\cdot35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
=>\(x\cdot\dfrac{1}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
=>x=3
= 5-2/2x5+8-5/5x8+11-8/8x11+14-11/11x14
=(1/2-1/5)+(1/5-1/8)+(1/8-1/11)+(1/11-1/14)
=(1/2+1/5+1/8+1/11)-(1/5+1/8+1/11+1/14)
=1/2-1/14
=3/7
Vậy B=3/7
Ta có : \(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}\)
\(\Rightarrow3S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(\Rightarrow3S=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
\(\Rightarrow S=\frac{3}{7}.\frac{1}{3}=\frac{1}{7}\)
3S= 1/2 - 1/5 + 1/5 - 1/8 + ... + 1/11 - 1/14
3S= 1/2 - 1/14
S= 3/7 / 3
S= 1/7
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{7}{14}-\frac{1}{14}\)
\(=\frac{6}{14}\)
\(=\frac{3}{7}\)
3/2x5 + 3/5x8 + 3/8x11 + 3/11x14
= 3/2 - 3/5 + 3/5 - 3/8 + 3/8 - 3/11 + 3/11 - 3/14
= 3/2 - 3/14
= 21/14 - 3/14
= 18/14
= 9/5
\(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}+\frac{1}{14\times17}+\frac{1}{17\times20}\)
\(=\frac{1}{3}\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}+\frac{3}{14\times17}+\frac{3}{17\times20}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\times\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=\frac{1}{3}\times\frac{9}{20}\)
\(=\frac{3}{20}\)
_Chúc bạn học tốt_
Đặt \(A=\frac{1}{2x5}+\frac{1}{5x8}+..+\frac{1}{17x20}\)
\(3xA=3x\left(\frac{1}{2x5}+\frac{1}{5x8}+...+\frac{1}{17x20}\right)\)
\(3xA=\frac{3}{2x5}+\frac{3}{5x8}+....+\frac{3}{17x20}\)
\(3xA=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+..+\frac{1}{17}-\frac{1}{20}\)
\(3xA=\frac{1}{2}-\frac{1}{20}\)
\(3xA=\frac{9}{20}\)
\(\Rightarrow A=\frac{3}{20}\)
S= 1/2x5 + 1/5x8 + 1/8x11 + 1/11x14 + .... + 1/97x100
S = 1/2 x 1/5 + 1/5 x 1/8 + 1/8 x 1/11 + 1/11 x 1/14 + .......+ 1/97 x 1/100
S = 1/2 x ( 1/5 + 1/5 x 1/8 + 1/8 x 1/11 + 1/11 x 1/14 + .......+ 1/97 ) x 1/100
S = 1/2 x 1/100
S = 1/200
~ Hok T ~
\(S=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{97\cdot100}\)
\(S=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+....+\frac{3}{97\cdot100}\right)\)
\(S=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\cdot\frac{49}{100}\)
\(S=\frac{49}{300}\)
\(\dfrac{x}{2\times5}+\dfrac{x}{5\times8}+\dfrac{x}{8\times11}+\dfrac{x}{11\times14}+...+\dfrac{x}{32\times35}=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{3}{2\times5}+\dfrac{3}{5\times8}+\dfrac{3}{8\times11}+\dfrac{3}{11\times14}+...+\dfrac{3}{32\times35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{32}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\left(\dfrac{1}{2}-\dfrac{1}{35}\right)=\dfrac{33}{70}\)
\(\dfrac{x}{3}\cdot\dfrac{33}{70}=\dfrac{33}{70}\)
\(\dfrac{x}{3}=\dfrac{33}{70}:\dfrac{33}{70}\)
\(\dfrac{x}{3}=1\)
\(x=3\)