Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=(1x3+3x5+...+99x101)+(2x4+4x6+...+98x100)
đặt S=1x3+3x5+...+99x101
=>6S=6x(1x3+3x5+...+99x101)
=1x3x(5+1)+3x5x(7-1)+...+97x99x(101-95)+99x101x(103-97)
=1x3x5+1x3x1+3x5x7-1x3x5+....+97x99x101-95x97x99+99x101x103-97x99x101
=1x3x1+99x101x103
=>S=(3+99x101x103):6=171650
=>C=171650+(2x4+4x6+...+98x100)
đặt A=2x4+4x6+...+98x100
=>6A=6x(2x4+4x6+...+98x100)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100
=98x100x102
=>A=98x100x102:6=166600
=>C=166600+171650
=>C=338250
B=2x2+4x4+6x6+...+100x100
=2x(4-2)+4x(6-2)+6x(8-2)+...+100x(102-2)
=2x4-4+4x6-8+6x8-12+...+100x102-200
=(2x4+4x6+6x8+...+100x102)-(4+8+12+...+200)
đặt A=2x4+4x6+...+98x100+100x102
=>6A=6x(2x4+4x6+...+98x100+100x102)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)+100x102x(104-98)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100+100x102x104-98x100x102
=100x102x104
=>A=100x102x104:6=176800
=>B=176800-(4+8+12+...+200)
đặt S=4+8+12+..+200
Số số hạng của S là:
(200-4):4+1=50 số
S=(200+4)x50:2=5100
=>B=176800-5100
=>B=171700
a/ => 7(x + 1) = 119
=> x + 1 = 17
=> x = 16
b/ => 3x - 6 = 33 = 27
=> 3x = 33
=> x = 11
\(x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\Leftrightarrow x=-1\\x=0\end{cases}}\)
\(30\left(x+2\right)-6\left(x-5\right)-24x=100\Leftrightarrow30x+60-6x+30-24x=100\)
\(\Leftrightarrow90=100\left(loại\right)\)
Vậy ko có gt x tmđk
\(x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(30\left(x+2\right)-6\left(x-5\right)-24x=100\)
\(\Rightarrow30x+60-6x+30-24x=100\)
\(\Rightarrow30x-6x-24x=100-30-60\)
\(\Rightarrow0x=10\)
=> x ko tồn tại gtrị nào
P/s: chưa chắc
\(6\cdot x-5=613\)
\(6\cdot x=613+5\)
\(6\cdot x=618\)
\(x=618\div6\)
\(x=103\)
Vậy \(x=103\)
\(12\cdot x+3\cdot x=30\)
\(x\cdot\left(12+3\right)=30\)
\(x\cdot15=30\)
\(x=30\div15\)
\(x=2\)
Vậy \(x=2\)
\(125-25\cdot\left(x-1\right)=100\)
\(25\cdot\left(x-1\right)=125-100\)
\(25\cdot\left(x-1\right)=25\)
\(x-1=25\div25\)
\(x-1=1\)
\(x=1+1\)
\(x=2\)
Vậy \(x=2\)
\(\left(x-2\right)\cdot\left(x-14\right)=0\)
\(\Rightarrow\) \(x-2=0\) hoặc \(x-14=0\)
TH1: \(x-2=0\) TH2: \(x-14=0\)
\(x=0+2\) \(x=0+14\)
\(x=2\) \(x=14\)
Vậy \(x=2\) hoặc \(x=14\)
\(128-3\cdot\left(x+4\right)=23\)
\(3\cdot\left(x+4\right)=128-23\)
\(3\cdot\left(x+4\right)=105\)
\(x+4=105\div3\)
\(x+4=35\)
\(x=35-4\)
\(x=31\)
Vậy \(x=31\)
12.x+3.x=30
x.(12+3)=30
x.15=30
x =30:15
x =2
125-25.(x-1)=100
25.(x-1)=125-100
25.(x-1)=25
x-1=25:25
x-1=1
x =1+1
x=2
(x-2).(x-14)=0
x=14
128-3.(x+4)=23
3.(x+4)=128-23
3.(x+4)=105
x+4=105:3
x+4=35
x = 35+4
x =39
Sửa đề : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+....+\frac{\left(x+1\right)-x}{x\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{\left(x+1\right)}=\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{1}-\frac{98}{100}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{50}\)
\(\Leftrightarrow x=50-1=49\)
Sửa đề: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{98}{100}\)
(=)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(1-\frac{1}{x+1}=\frac{98}{100}\)
(=)\(\frac{1}{x+1}=1-\frac{98}{100}\)
(=)\(\frac{1}{x+1}=\frac{1}{50}\)=> \(x+1=50\)
\(x=50-1\)
\(x=49\)
T_i_c_k cho mình nha,thanks you so much!
Bài 2:
Ta có: (x-3)(x+4)>0
=>x>3 hoặc x<-4
Bài 3:
a: \(5S=5-5^2+...+5^{99}-5^{100}\)
\(\Leftrightarrow6S=1-5^{100}\)
hay \(S=\dfrac{1-5^{100}}{6}\)
(x + 2) + (x + 4) + (x + 6) +...+ (x + 100) = 5100
x + 2 + x + 4 + x + 6 +... + x + 100 = 5100
50x + (2 + 4 + 6 +... + 100) = 5100
50x + 2550 = 5100
50x = 5100 - 2550 = 2550
x = 2550 : 50 = 51
Vây x = 51