Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2+4x-5=x^2+2x+2x+4-9\)
\(=\left(x^2+2x\right)+\left(2x+4\right)-9\)
\(=x.\left(x+2\right)+2.\left(x+2\right)-9\)
\(=\left(x+2\right)^2-9\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-9\ge-9\) với mọi giá trị của \(x\in R\).
Để \(\left(x+2\right)^2-9=-9\) thì \(\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy.......
b, \(4x^2+4x-3=4x^2+2x+2x+1-4\)
\(=2x.\left(2x+1\right)+\left(2x+1\right)-4\)
\(=\left(2x+1\right)^2-4\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-4\ge-4\) với mọi giá trị của \(x\in R\).
Để \(\left(2x+1\right)^2-4=-4\) thì \(\left(2x+1\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy.........
c, \(x^2+x+1=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=x.\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}.\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).
Để \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\) thì \(\left(x+\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)
Vậy.........
Chúc bạn học tốt!!!
Các câu còn lại làm tương tự!!
a) A = x2 + 4x - 5
A = x2 + 4x + 4 +1 = ( x + 2 )2 + 1 \(\ge\) 1 với mọi x
MinA = 1 khi và chỉ khi x = -2
b) B = 4x2 + 4x - 3
B = 4x2 + 4x + 1 - 4
B = ( 2x+1 )2 - 4 \(\ge\) -4 với mọi x
MinB = -4 khi và chỉ khi x = \(\dfrac{-1}{2}\)
c) C = x2 + x + 1
C = x2 + x + \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
C = ( x + \(\dfrac{1}{2}\) )2 + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{3}{4}\) với mọi x
MinC = \(\dfrac{3}{4}\) khi và chỉ khi x = \(-\dfrac{1}{2}\)
d) D = 2x2 + 4x + 8
D = 2 . ( x2 + 2x + 4 )
D = 2. ( x2 + 2x + 1 + 3 )
D = 2. \(\left[\left(x+1\right)^2+3\right]\)
D = 2.( x+1 )2 + 6 \(\ge\) 6 với mọi x
MinD = 6 khi và chỉ khi x = -1
e) E = x2 + x
E = x2 + x + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\)
E = \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\) \(\ge\) \(-\dfrac{1}{4}\) với mọi x
MinE = \(-\dfrac{1}{4}\) khi và chỉ khi x = \(\dfrac{-1}{2}\)
|5x-3| - 3x = 7
*Nếu \(x\ge\frac{3}{5}\)
5x - 3 - 3x = 7
2x = 10
x = 5 ( tm)
*Nếu \(x< \frac{3}{5}\)
3 - 5x - 3x = 7
-8x = 4
x = \(-\frac{1}{2}\)( tm )
Làm hơi khó nhìn , thông cảm. Mệt rùi :)
|x - 3| + |x - 5| - 4x = -28
*Nếu x < 3
3 - x + 5 - x - 4x = -28
-6x = -36
x = 6 ( loại do ko tm khoảng đang xét )
* nếu 3 < x < 5
x - 3 + 5 - x - 4x = -28
-4x = -30
x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )
*Nếu x > 5
x - 3 + x - 5 - 4x = -28
-2x = -20
x = 10 ( tm)
Vậy x =10
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
h(x) = f(x) + g(x) =\(-3x\left(x-2\right)+5x^4-x^2\left(x-3\right)-6x+2\)2 + \(2x^2\left(x^2+3\right)-4x^3-4x^3+2\left(x-1\right)+5\)
= \(-3x^2+6x+5x^4-x^3+3x^2-6x+2+2x^4+6x^2\)-\(4x^3-4x^3+2x-2+5\)
mk làm ra đến đây rồi, bạn tự làm tp nhé, phần sau dễ thôi
sau đó thay h(-1) vào rồi tính nhé
câu sau làm tương tự