K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

1/ (x-63)(x+10)(4x-188x-2520)

15 tháng 8 2016

2/ 9(x-1)(2x-1)(64x2 + 208x+32)/8

2 tháng 11 2019

\(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)\(\left(đk:x\in R\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\\\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=2\\x=-8\end{cases}}\\\orbr{\begin{cases}x=1\\x=-7\end{cases}}\end{cases}}\)

\(\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-8\left(tm\right)\end{cases}}\)

\(\orbr{\begin{cases}x-1=0\\x+8=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-8\left(tm\right)\end{cases}}\)

Vậy \(S=\left\{1;2;-8;-7\right\}\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x-2=0\\x+8=0\end{cases}}\\\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8=0.\)

\(\Leftrightarrow\left(x-1\right)\left(x+7\right)\left(x-2\right)\left(x+8\right)+8=0.\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0.\)

đặt \(\left(x^2+6x-7\right)=a.\)

\(a\left(a-9\right)+8=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=8\end{cases}}\)

thay ròi giả tiếp .

8 tháng 2 2019

(x^2-x-2x+2)(x^2+8x+7x+56)+8=0

{x(x-1)-2(x-1)}{x(x+8)+7(x+8)}+8=0

(x-1)(x-2)(x+8)(x+7)+8=0

(x-1)(x-2)(x+8)(x+7)=-8

15 tháng 9 2019

Sửa đề \(\left(8x-11\right)^3+\left(7x-12\right)^3+\left(23-15x\right)^3=0\)

Đặt \(8x-11=a\)

\(7x-12=b\)

\(23-15x=c\)

=> a+b+c=8x-11+7x-12+23-15x=0

\(a^3+b^3+c^3-3abc\)

= \(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

=\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)

=0 (do a+b+c=0)

=> \(a^3+b^3+c^3=3abc\)

<=> \(0=3\left(8x-11\right)\left(7x-12\right)\left(23-15x\right)\)

=> \(\left[{}\begin{matrix}x=\frac{11}{8}\\x=\frac{12}{7}\\x=\frac{23}{15}\end{matrix}\right.\)

1 tháng 7 2019

a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)

\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)

=> ptvn

d) ĐK : \(x^2+7x+7\ge0\)

Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)

\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)

\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)

\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )

\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )

1 tháng 7 2019

f) ĐK : \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :

\(a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)