Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(4m+1\right)^2-8\left(m-4\right)\)
\(=16m^2+8m+1-8m+32\)
\(=16m^2+33>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(\left|x_1-x_2\right|=17\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=17\)
\(\Leftrightarrow\sqrt{\left(4m+1\right)^2-4\cdot2\cdot\left(m-4\right)}=17\)
\(\Leftrightarrow\sqrt{16m^2+8m+1-8m+32}=17\)
\(\Leftrightarrow16m^2+33=289\)
=>m=4 hoặc m=-4
Ta có : \(ax^2+3\left(a+1\right)x+2a+4=0\left(a=a;b=3a+3;c=2a+4\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=\frac{-3a-3}{a};x_1x_1=\frac{2a+4}{a}\)
Theo bài ra ta có : \(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\) Thay vào ta đc :
\(\Leftrightarrow\left(\frac{-3a-3}{a}\right)^2-2\left(\frac{2a+4}{a}\right)=4\)
\(\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a+8}{a}=4\Leftrightarrow\frac{9\left(a+1\right)^2}{a^2}-\frac{4a^2+8a}{a^2}=\frac{4a^2}{a^2}\)
Khử mẫu ta đc : \(9\left(a+1\right)^2-4a^2+8a=4a^2\)
\(\Leftrightarrow9\left(a^2+2a+1\right)-4a^2+8a=4a^2\)
\(\Leftrightarrow9a^2+18a+9-4a^2+8a-4a^2=0\)
\(\Leftrightarrow a^2+27a+9=0\)Ta có : \(\Delta=27^2-4.9=729-36=613>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-27-\sqrt{613}}{2};x_2=\frac{-27+\sqrt{613}}{2}\)
\(x^2+2\left(m+1\right)+4m-4=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)
\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)
\(\Leftrightarrow4m^2+8m+4+4m-4=0\)
\(\Leftrightarrow4m^2+12m=0\)
\(\Leftrightarrow4m\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)
Lời giải:
a) Khi $m=2$ thì pt trở thành:
$x^2-10x+15=0\Leftrightarrow (x-5)^2=10\Rightarrow x=5\pm \sqrt{10}$
b)
Để pt có 2 nghiệm pb $x_1,x_2$ thì trước tiên:
$\Delta'=(2m+1)^2-(4m^2-2m+3)>0$
$\Leftrightarrow 6m-2>0\Leftrightarrow m>\frac{1}{3}$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(2m+1)\\ x_1x_2=4m^2-2m+3\end{matrix}\right.\)
Để $(x_1-1)^2+(x_2-1)^2+2(x_1+x_2-x_1x_2)=18$
$\Leftrightarrow x_1^2+x_2^2-2(x_1+x_2)+2+2(x_1+x_2-x_1x_2)=18$
$\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16$
$\Leftrightarrow 4(2m+1)^2-4(4m^2-2m+3)=16$
$\Leftrightarrow (2m+1)^2-(4m^2-2m+3)=4$
$\Leftrightarrow 6m-2=4\Leftrightarrow m=1$ (thỏa mãn)
vậy...........
\(x^2+4mx+4m+2m-8=0\)
\(x^2+4mx+6m-8=0\)
\(x^2+2m\left(2x+3-4\right)=0\)
\(x^2+2m\left(2x-1\right)=0\)