Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + y2 + z2 = xy + 3y + 2z - 4
<=> 4x2 + 4y2 + 4z2 = 4xy + 12y + 8z - 16
<=> (4x2 - 4xy + y2) + (3y2 - 12y + 12) + (4z2 - 8z + 4) = 0
<=> (2x - y)2 + 3(y - 2)2 + (2z - 2)2 = 0
Dấu = xảy ra khi
\(\hept{\begin{cases}2x-y=0\\y-2=0\\2z-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)
x2 + y2 + z2 = xy + 3y + 2z - 4
\(\Leftrightarrow\)(x2 - xy + \(\frac{y^2}{4}\)) + (z2 - 2z + 1) + (\(\frac{3y^2}{4}\) - 3y + 3) = 0
\(\Leftrightarrow\) (x - \(\frac{y}{2}\))2 + (z - 1)2 + 3(\(\frac{y}{2}\) - 1)2 = 0
\(\Leftrightarrow\left\{\begin{matrix}x-\frac{y}{2}=0\\z-1=0\\\frac{y}{2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=1\\y=2\\z=1\end{matrix}\right.\)
\(x^2+y^2+z^2-xy-3y-2z+4=0\)không có thừ số x à.
(\(\left(x-\frac{y}{2}\right)^2+3\left(\frac{y}{2}-1\right)^2+\left(z-1\right)^2=0\)
y=2
x^2+y^2+z^2-xy-3y-2z+4=0
x^2-xy+1/4y^2+3/4y^2-3y+3+z^2-2z+1=0
(x-1/2y)^2+3/4(y-2)^2+(z-1)^2=0
suy ra (x-1/2y)^2=0 (y-2)^2=0 (z-1)^2=0
x=1/2y y=2 z=1
x=1,y=2,z=1
pt <=> \(\left(x^2-2x.\frac{y}{2}+\frac{y^2}{4}\right)+\frac{3}{4}.\left(y^2-4y+4\right)+\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(x-\frac{y}{2}\right)^2+\frac{3}{4}.\left(y-2\right)^2+\left(z-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{y}{2}=0\\y-2=0\\z-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}\)