Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x+2)(x+4)(x+6)(x+8)+16
=[(x+2)(x+8)]+[(x+4)(x+6)]+16
\(=\left[x^2+10x+16\right]\left[x^2+10x+24\right]+16\) (1)
Đặt \(x^2+10x+16=t\), khi đó (1) trở thành:
\(t\left(t+8\right)+16=t^2+8t+16=\left(t+4\right)^2\)
Thay \(x^2+10x+16=t\), ta có: \(\left(x^2+10x+16+4\right)^2=\left(x^2+10x+20\right)^2\)
Có gì đó sai sai á nhờ :vv?
( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16
= [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16
= ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 (*)
Đặt t = x2 + 10x + 20
(*) <=> ( t - 4 )( t + 4 ) + 16
= t2 - 16 + 16
= t2 = ( x2 + 10x + 20 )2
Ta có :
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(x^2+5x+5=t\)
=> Đa thức trở thành
\(\left(t-1\right)\left(t+1\right)+1\)
\(=t^2-1+1\)
\(=t^2\)
Thay vào ta được
Đt=\(\left(x^2+5x+5\right)^2\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\) (1)
Đặt \(x^2+5x+5=t\) thì (1)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)
\(x^4+2x^2-24\)
Đặt \(t=x^2\) ta có:
\(t^2+2t-24=t^2-4t+6t-24\)
\(=t\left(t-4\right)+6\left(t-4\right)\)
\(=\left(t+6\right)\left(t-4\right)\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x^2+6\right)\)
Ta có:
x4+2x3+x2+x+1=(x2)2+2.x2.x+x2+x+1
=(x2+x)+(x+1)
=x2+2x+1
=(x+1)2
\(x^3+3x^2-4\)
\(=x^4-x^2+4x^2-4\)
\(=x^2.\left(x^2-1\right)+4.\left(x^2-1\right)\)
\(=\left(x^2+4\right).\left(x^2-1\right)\)
\(x^3+3x^2-4\)
\(=x^3-x^2+4x^2-4\)
\(=x^2\left(x-1\right)+4\left(x^2-1\right)\)
\(=x^2\left(x-1\right)+4\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1\right)\left[x^2+4\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2+4x+4\right)\)
\(=\left(x-1\right)\left(x+2\right)^2\)
=.= hok tốt!!
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\text{[ (x-1)^2+y(x-1)+y^2}\)
\(=\left(x-y-1\right)\left[\left(x-1\right)\left(x-1+y\right)+y^2\right]\)
(x2 + x)2 - 4(x2 + x) - 12
= [(x2 + x)2 - 4(x2 + x) + 4] - 16
= (x2 + x - 2)2 - 16
= (x2 + x - 6)(x2 + x + 2)
= (x2 - 2x + 3x - 6)(x2 + x + 2)
= (x - 2)(x + 3)(x2 + x + 2)
Đặt t = x2 + x
bthuc ⇔ t2 - 4t - 12
= t2 - 6t + 2t - 12
= t( t - 6 ) + 2( t - 6 )
= ( t - 6 )( t + 2 )
= ( x2 + x - 6 )( x2 + x + 2 )
= ( x2 - 2x + 3x - 6 )( x2 + x + 2 )
= [ x( x - 2 ) + 3( x - 2 ) ]( x2 + x + 2 )
= ( x - 2 )( x + 3 )( x2 + x + 2 )