K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

 đầu bài yêu cầu gì thế >?>

17 tháng 8 2017

* \(x^2-8x+12=0\Leftrightarrow x^2-2x-6x+12=0\)

\(\Leftrightarrow x\left(x-2\right)-6\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\) vậy \(x=2;x=6\)

* \(x^2+5x-14=0\Leftrightarrow x^2-2x+7x-14=0\)

\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\Leftrightarrow\left(x+7\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=2\end{matrix}\right.\) vậy \(x=-7;x=2\)

* \(16x^2-81=0\Leftrightarrow16\left(x^2-\dfrac{81}{16}\right)=0\Leftrightarrow x^2-\dfrac{81}{16}=0\)

\(\Leftrightarrow x^2=\dfrac{81}{16}\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\) vậy \(x=\dfrac{9}{4};x=\dfrac{-9}{4}\)

17 tháng 8 2017

+ \(x^2-8x+12=0\)

\(\Rightarrow\left(x^2-2.4x+16\right)-4=0\)

\(\Rightarrow\left(x-4\right)^2-4=0\)

\(\Rightarrow\left(x-4\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

+ \(16x^2-81=0\)

\(\Rightarrow16x^2-9^2=0\)

\(\Rightarrow16x^2=9^2\)

\(\Rightarrow x^2=\dfrac{81}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{81}{16}}\\x=-\sqrt{\dfrac{81}{16}}\end{matrix}\right.\)

 

5 tháng 11 2018

\(a,9x^2-49=0\)

\(9x^2=49\)

\(x^2=\frac{49}{9}=\frac{7^2}{3^2}=\frac{\left(-7\right)^2}{\left(-3\right)^2}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)

vậy ...

\(c,x^3-16x=0\)

\(x.\left(x^2-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4,x=-4\end{cases}}\)

vậy ...

28 tháng 3 2017

<=>  (x+x +4)2 + 2 . 4x(x2+ x + 4) + (4x)2 = 0

<=>  ( x2 + x+ 4 +4x )2 = 0

<=>  [(x2 + x) + (4 +4x)]  =0

<=>  [x(x+1) + 4(1+x)]  =0

<=>  (x+1) + (x+4)  =0

  • x+1 = 0 <=> x= -1
  • x+4 = 0 <=> x= -4

\(4+2x\left(2x+4\right)=-x\)

\(4+2x.2x+8x=-x\)

\(4x+8x+x=-4\)

\(13x=-4\)

\(x=-\frac{4}{13}\)

 Vậy pt có nghiệm là { -4/13 }

24 tháng 2 2020

2) mình nghĩ thế này

(2x-3)^2=2x-3

Đẻ 2 cái trên = nhau thfi 

2x-3=1

=> x=2

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Lời giải:

a)

\(x^2-2x=24\)

\(\Leftrightarrow x^2-6x+4x-24=0\)

\(\Leftrightarrow x(x-6)+4(x-6)=0\Leftrightarrow (x+4)(x-6)=0\)

\(\Rightarrow \left[\begin{matrix} x+4=0\\ x-6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-4\\ x=6\end{matrix}\right.\)

b)

\(x^3-7x+6=0\Leftrightarrow (x^3-x)-(6x-6)=0\)

\(\Leftrightarrow x(x^2-1)-6(x-1)=0\)

\(\Leftrightarrow x(x-1)(x+1)-6(x-1)=0\)

\(\Leftrightarrow (x-1)(x^2+x-6)=0\)

\(\Leftrightarrow (x-1)(x^2-2x+3x-6)=0\)

\(\Leftrightarrow (x-1)[x(x-2)+3(x-2)]=0\)

\(\Leftrightarrow (x-1)(x-2)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=2\\ x=-3\end{matrix}\right.\)

c) Xem lại đề.

d) Đặt \(x^2+x+4=a\) thì pt trở thành:

\(a^2+8ax+16x^2=0\)

\(\Leftrightarrow a^2+2.a.4x+(4x)^2=0\)

\(\Leftrightarrow (a+4x)^2=0\Rightarrow a+4x=0\)

\(\Rightarrow x^2+x+4+4x=0\)

\(\Rightarrow x(x+1)+4(x+1)=0\Leftrightarrow (x+1)(x+4)=0\)

\(\Rightarrow \left[\begin{matrix} x+4=0\rightarrow x=-4\\ x+1=0\rightarrow x=-1\end{matrix}\right.\)

27 tháng 9 2018

Sửa đề: c) (x2+x)2+4(x2+x)=12

22 tháng 1 2019

a. \(\left(2x-1\right)\left(3x+2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-2}{3}\\x=5\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{1}{2};\dfrac{-2}{3};5\right\}\)

b. \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)\)

\(\Leftrightarrow3x\left(x-4\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;4\right\}\)

c. \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)

\(\Leftrightarrow\left(4x-1\right)^2-4\left(x+3\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(4x-1-4x-3\right)=0\)

\(\Leftrightarrow-4\left(4x-1\right)=0\Leftrightarrow4x-1=0\Leftrightarrow x=\dfrac{1}{4}\)

d. \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)

\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(27x-12\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\27x-12=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\\x=-3\end{matrix}\right.\)

\(\Rightarrow S=\left\{0;\dfrac{4}{9};-3\right\}\)

e. \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(6x+1-x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\7x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-3}{7}\end{matrix}\right.\)

\(\Rightarrow S=\left\{\dfrac{-1}{3};\dfrac{-3}{7}\right\}\)

g. \(\left(2x-1\right)^2=49\)

\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)