K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

a. \(^{x^2-6x+10>0}\) có \(\left(^{ }x-3\right)^2+1>0\) => điều phải CM

b. -(x^2 -4x+5) = -(x-2)^2 -1 < 0 với mọi x

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

2 tháng 8 2018

a) Có x2-6x+10=(x2-2.x.3+32)+1=(x-3)2+1

Vì (x-3)2 ≥0 với mọi x

nên (x-3)2+1>0 với mọi x

b) Có 4x-x2-5=-(x2-4x+4)-1=-(x2-2.x.2+22)-1=-(x-2)2-1

Vì -(x-2)2≤0 với mọi x

nên -(x-2)2-1<0 với mọi x

c)Gỉa sử (x+5)(x-3)+20>0 là đúng thì

⇔x2-3x+5x-15+20>0

⇔x2+2x+5>0 ⇔(x2+2x.1+12)+4>0 ⇔(x+1)2+4>0

Vì (x+1)2 >=0 với mọi x

Nên (x+1)2+4>0 là đúng

Vậy (x+5)(x-3)+20>0 với mọi x

28 tháng 6 2019

a) \(x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1>0\)

hay \(x^2-6x+10>0\left(đpcm\right)\)

b) \(4x-x^2-5=-\left(x^2-4x\right)-5=-\left(x^2-4x+4\right)+4-5\)

\(=-\left(x-2\right)^2-1\)

Vì \(-\left(x-2\right)^2\le0\forall x\)nên \(-\left(x-2\right)^2-1< 0\)

hay \(4x-x^2-5< 0\left(đpcm\right)\)

28 tháng 6 2019

a) Ta có:

\(x^2-6x+10=x^2-6x+9+1\) 1

\(=\left(x-3\right)^2+1\) 

vì \(\left(x-3\right)^2\ge0\forall x\in R\) ;1>0

\(\Rightarrow\left(x-3\right)^2+1\ge1\forall x\in R\) 

=>đpcm

b)

\(4x-x^2-5=-\left(x^2-4x+4\right)-1\) 

\(=-\left(x-2\right)^2-1\) 

vì:\(-\left(x-2\right)^2\le0\forall x\in R\) ;-1<0

=>..........

vậy...

hc tốt

10 tháng 8 2016

a,( x^2-6x+9)+1

=(x-3)^2+1

tự làm tiếp nhé bạn

b, -x^2-4x-4-1

=-(x^2+4x+4)-1

=-(x+2)^2-1

ta thấy -(x+2)^2<0

tự làm tiếp nhé bạn mình chỉ gợi ý thôi

10 tháng 8 2016

a)

=x2-2.3x+9+1

=(x-3)2+1

vì (x-3)2 >= 0 với mọi x nên (x-3)2+1 >0 đpcm

12 tháng 9 2017

Giải:

a) \(x^2-6x+10\)

\(=x^2+6x+9+1\)

\(=\left(x+3\right)^2+1\)

\(\left(x+3\right)^2\ge0\forall x\)

Nên \(\left(x+3\right)^2+1\ge1\forall x\)

Vậy \(\left(x+3\right)^2+1>0\forall x\).

b) \(4x-x^2-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x+2\right)^2-1\)

\(-\left(x-2\right)^2\le0\forall x\)

Nên \(-\left(x+2\right)^2-1\le-1\forall x\)

Vậy \(-\left(x+2\right)^2-1< 0\forall x\).

Chúc bạn học tốt!

12 tháng 9 2017

\(\text{a) }x^2-6x+10\\ =x^2-6x+9+1\\ =\left(x^2-6x+9\right)+1\\ =\left(x^2-2\cdot x\cdot3+3^2\right)+1\\ =\left(x-3\right)^2+1\\ \text{Ta có : }\left(x-3\right)^2\ge0\forall x\\ \Rightarrow\left(x-3\right)^2+1\ge1\forall x\\ \Rightarrow\left(x-3\right)^2+1>0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị dương }\forall x\)

\(\text{b) }4x-x^2-5\\ =-x^2+4x-4-1\\ =-\left(x^2-4x+4\right)-1\\ =-\left(x^2-2\cdot x\cdot2+2^2\right)-1\\ =-\left(x-2\right)^2-1\\ \text{Ta có : }\left(x-2\right)^2\ge0\forall x\\ \Rightarrow-\left(x-2\right)^2\le0\forall x\\ \Rightarrow-\left(x-2\right)^2-1\le-1\forall x\\ \Rightarrow-\left(x-2\right)^2-1< 0\forall x\left(đpcm\right)\\ \text{Vậy biểu thức luôn nhận giá trị âm }\forall x\)

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

19 tháng 7 2017

E=4x​2​+5x+5>0 với mọi x

=(4x​2 +4x+1)+4

=(2x+1)\(^2\)+4

Với mọi x thuộc R thì (2x+1)\(^2\)>=0

Suy ra(2x+1)\(^2\)+4>=4>0

Hay E>0 với mọi x thuộc R(đpcm)

F=5x2​-6x+7>0 với mọi x

=(5x\(^2\)-6x+\(\dfrac{36}{25}\))+\(\dfrac{139}{25}\)

=5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)

Với mọi x thuộc R thì 5\(\left(x-\dfrac{6}{5}\right)^2\)>=0

Suy ra 5\(\left(x-\dfrac{6}{5}\right)^2\)+\(\dfrac{139}{25}\)>0

Hay F >0 với mọi x(đpcm)

G=-x​2​​+5x -6<0 với mọi x​

=-(x​2​​-5x+6,25)+0,25

=-(x-2,5)2 +0,25

Với mọi x thuộc R thì -(x-2,5)2 <=0

Suy ra -(x-2,5)2 +0,25<0

Hay G<0 với mọi x (đpcm)

chúc bạn học tốt ạ

10 tháng 6 2015

x2-6x+10

=x2-6x+9+1

=(x-3)2+1>0 với mọi x (vì (x-3)2\(\ge\)0 với mọi x)

4x-x2-5

= -x2+4x-4-1

= -(x2-4x+4)-1

= -(x-2)2-1<0 với mọi x(vì -(x-2)2<0 với mọi x)