\(P=x^2-2xyz+z^2\)và \(Q=3xyz-z^2+5x^2\)

tính P+Q và P...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

P = x^2 - 2xyz + z^2

Q = 5x^2 + 3xyz - z^2

=> P + Q = 6x^2 + xyz 

P - Q = -4x^2 - 5xyz + 2z^2

29 tháng 4 2019

\(P+Q=x^2-2xyz-z^2+3xyz-z^2+5x^2\)

\(=\left(x^2+5x^2\right)+\left(-2xyz+3xyz\right)+\left(-z^2-z^2\right)\)

\(=6x^2+xyz-2z^2\)

\(P-Q=x^2-2xyz-z^2-3xyz+z^2-5x^2\)

\(=\left(x^2-5x^2\right)+\left(-2xyz-3xyz\right)+\left(-z^2+z^2\right)\)

\(=-4x^2-5xyz\)

25 tháng 5 2017

a) (5x2y-5xy2+xy) + (xy-x2y2+5xy2)

= 5x2y-5xy2+xy+xy-x2y2+5xy2

= 5x2y+(5xy2-5xy2)+(xy+xy)-x2y2

= 5x2y+2xy-x2y2

b) (x2+y2+z2) + (x2-y2+z2)

= x2+y2+z2+x2-y2+z2

= (x2+x2)+(y2-y2)+(z2+z2)

= 2x2+2z2

11 tháng 1 2018

a)( \(5x^2y\)\(-\) \(5xy^2\) \(+\) \(xy\)) + (\(xy\) \(-\) \(x^2y^2\) \(+\) \(5xy^2\))

= \(5x^2y-5xy^2+xy+xy-x^2y^2+5xy^2\)

= \(5x^2y+2xy-x^2y^2\)

b) \(\left(x^2+y^2+z^2\right)+\left(x^2-y^2+z^2\right)\)

= \(x^2+y^2+z^2+x^2-y^2+z^2\)

=\(2x^2+2z^2\)

=\(2\left(x+z\right)^2\)

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
19 tháng 7 2018

Ta có :

\(Q+P\)

\(=3xyz+2.5xy^2-2+2xyz+1.5xyz-y^3\)

\(=6.5xyz+2.5xy^2-y^3-2\)

\(Q-P=3xyz+2.5xy^2-2-2xyz-1.5xyz+y^3\)

\(=2.5xy^2-0.5xyz+y^3-2\)

\(P-Q=2xyz+1.5xyz-y^3-3xyz-2.5xy^2+2\)

\(=0.5xyz-y^3-2.5xy^2+2\)

14 tháng 3 2024

25 tháng 6 2019

a) Thiếu đề

b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

 \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)

=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)

Vậy ...

25 tháng 6 2019

Sửa lại xíu :

 \(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)

\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)

1 tháng 4 2018

thay x= -1/2 ; y= 4; z =6 vào biểu thức A

có: \(A=\left(\frac{-1}{2}\right)^2.4+\left(\left(\frac{-1}{2}\right)^3-3.\frac{-1}{2}.4.6\right)+\left(-14^{15}\right)^0\)

\(A=\frac{1}{4}.4+\left(\frac{-1}{8}-\left(-36\right)\right)+1\)

\(A=1+35\frac{7}{8}+1\)

\(A=37\frac{7}{8}\)

KL: \(A=37\frac{7}{8}\)  tại x= -1/2 ; y=4; z=6

CHÚC BN HỌC TỐT!!!

22 tháng 7 2019

Câu 1: ĐẶt \(\frac{x}{5}=\frac{y}{4}=k\)\(\Rightarrow x=5k;......y=4k\)

Ta có: \(x^2y=\left(5k\right)^2.\left(4k\right)=400k^3=100\)

\(\Rightarrow k^3=\frac{1}{4}\Rightarrow k=\sqrt[3]{\frac{1}{4}}\)

Vậy \(x=5k=4\sqrt[3]{\frac{1}{4}}\)

\(y=4.\sqrt[3]{\frac{1}{4}}\)

Câu 3 4 5 tương tư:

câu 2. bạn biến đổi: \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)thì sẽ trở thành dạng quen thuộc ở trên. :))

22 tháng 7 2019

Bạn ơi mình chưa học cách bạn làm