Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho có hai nghiệm phân biệt khi
\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)
Theo định lí Viet: \(x_1+x_2=2m+2;x_1x_2=m^2+2\)
Khi đó \(x_1^3+x_2^3=2x_1x_2\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-5x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m+2\right)^3-5\left(m^2+2\right)\left(2m+2\right)=0\)
\(\Leftrightarrow m^3-7m^2-2m+6=0\)
\(\Leftrightarrow\left(m+1\right)\left(m^2-8m+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=4\pm\sqrt{10}\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1\ne0\\\Delta'=m^2-\left(m+1\right)\left(m+6\right)>0\\x_1+x_2=\dfrac{2m}{m+1}>0\\x_1x_2=\dfrac{m+6}{m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-7m-6>0\\\dfrac{2m}{m+1}>0\\\dfrac{m+6}{m+1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{6}{7}\\\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\\\left[{}\begin{matrix}m>-1\\m< -6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -6\)
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
Lời giải:
Để pt có 2 nghiệm thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)
Áp dụng định lý Viet:
\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)
Để $x_1< 0< x_2$
$\Leftrightarrow x_1x_2< 0$
$\Leftrightarrow \frac{m+5}{m}< 0$
$\Leftrightarrow -5< m< 0(2)$
$x_1< x_2< 2$
\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)
Từ $(1);(2);(3)$ suy ra $-5< m< -1$
Phương trình có 2 nghiệm khi \(\Delta'=m^2-4\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=4\end{matrix}\right.\)
\(\left(\dfrac{x_1}{x_2}\right)^2+\left(\dfrac{x_2}{x_1}\right)^2=3\)
\(\Rightarrow\left(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}\right)^2-2=3\)
\(\Rightarrow\left(\dfrac{x_1^2+x_2^2}{x_1x_2}\right)^2=5\)
\(\Rightarrow\left(\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}\right)^2=5\)
\(\Rightarrow\left(m^2-2\right)^2=5\)
\(\Rightarrow m^2=2+\sqrt{5}\)
\(\Rightarrow m=\pm\sqrt{2+\sqrt{5}}\)
\(mx^2+\left(m-1\right)x+3-4m=0\left(1\right)\)
\(m=0\Rightarrow\)\(\left(1\right)\Leftrightarrow-x+3=0\Leftrightarrow x=3\left(ktm\right)\)
\(m\ne0\Rightarrow x1< 2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2-4m\left(3-4m\right)>0\\x1x2-2\left(x1+x2\right)+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\\dfrac{3-4m}{m}-2.\left(\dfrac{1-m}{m}\right)+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{7+4\sqrt{2}}{17}\\m< \dfrac{7-4\sqrt{2}}{17}\end{matrix}\right.\\-\dfrac{1}{2}< m< 0\\\end{matrix}\right.\)\(\Rightarrow m\in\phi\)
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
\(A=x_1^2+x_2^2-x_1-x_2\)
\(A=\left(x_1+x_2\right)^2-\left(x_1+x_2\right)-2x_1x_2\)
\(A=\left(x_1+x_2\right)\left(x_1+x_2-1\right)-2x_1x_2\)(1)
\(\Delta_x=\left(m+1\right)^2+4m=m^2+6m+1\)
\(\Delta_m=9-1=8\)
\(\Delta_x\ge0\Rightarrow\left[{}\begin{matrix}m\le-3-2\sqrt{2}\\m\ge-3+2\sqrt{2}\end{matrix}\right.\) (2)
với đk (2) \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-4m\end{matrix}\right.\)(3)
(1);(3)<=>\(A=2\left(m+1\right)\left[2\left(m+1\right)-1\right]-2.\left(-4m\right)\)
\(A=6=\left(m+1\right)\left[2\left(m+1\right)-1\right]-\left(-4m\right)=3\)
\(A=\left(m+1\right)\left[2m+1\right]+4m=3\)
\(A=2m^2+7m-2=0\)
\(\left[{}\begin{matrix}m=\dfrac{-7+-\sqrt{65}}{4}\\\end{matrix}\right.\) so sánh đk m =(-7+can65)/4