K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2022

Để pt (2) vô nghiệm khi 

\(\Delta'=m^2-4< 0\Leftrightarrow m^2< 4\Leftrightarrow-2< m< 2\)

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

8 tháng 8 2023

PT vô nghiệm <=> \(\Delta'< 0\)

<=> \(\left(m+1\right)^2-2m^2-2m-1< 0\)

<=> \(m^2+2m+1-2m^2-2m-1< 0\)

<=> \(-m^2< 0\)

\(\Leftrightarrow m\ne0\)

Δ=(2m+2)^2-4(2m^2+2m+1)

=4m^2+8m+4-8m^2-8m-4

=-4m^2

Để phương trình vô nghiệm thì -4m^2<0

=>m^2>0

=>m<>0

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

26 tháng 4 2020

A, ta có: \(\Delta’\)=m2-1

Vậy trình có 2 nghiệm phân biệt <=> m2-1>0 => m>1

B,Phương trình có nghiệm kép khi: m2-1=0 => m=+- 1

Nghiem kép đó là: 0

26 tháng 4 2020

\(x^2+2\left(m+1\right)x+2m+2=0\)

\(\Delta'=\left(m+1\right)^2-\left(2m+2\right)=m^2-1\)

a, Để phương trình có hai nghiệm phân biệt thì:

\(\Delta'>0\)

\(\Leftrightarrow m^2>1\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow m< -1;m>1\)

b, Phương trinh có nghiệm kép khi:

\(\Delta'\ge0\)

\(\Leftrightarrow m^2-1\ge0\)

\(\Leftrightarrow m\le-1;m\ge1\)

Theo Viet ta có:

\(x_1+x_2=-2\left(m+1\right)\)

\(x_1x_2=2\left(m+1\right)\)

\(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow4m^2+4m-8=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)

So với điều kiện phương trình có nghiệm m=1 ; m =-2 

NV
26 tháng 3 2023

\(\Delta'=\left(m-2\right)^2-3\left(m-2\right)=\left(m-2\right)\left(m-5\right)\)

a.

Phương trình có nghiệm kép khi:

\(\left\{{}\begin{matrix}a=m-2\ne0\\\Delta'=\left(m-2\right)\left(m-5\right)=0\end{matrix}\right.\) \(\Rightarrow m=5\)

b.

Phương trình có 2 nghiệm pb khi: 

\(\left\{{}\begin{matrix}m-2\ne0\\\left(m-2\right)\left(m-5\right)>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)

c.

- Với \(m=2\) pt vô nghiệm

- Với \(m\ne2\) pt có nghiệm khi: \(\left(m-2\right)\left(m-5\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge5\\m< 2\end{matrix}\right.\)

d.

Pt vô nghiệm khi: \(\left[{}\begin{matrix}m=2\\\left(m-2\right)\left(m-5\right)< 0\end{matrix}\right.\)

\(\Rightarrow2\le m< 5\)

9 tháng 2 2022

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

9 tháng 2 2022

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)