Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}xy\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)
\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3=\dfrac{1}{27}x^3+8y^3\)
\(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)
\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+\dfrac{1}{3}.x^2+\left(\dfrac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)
\(=x^6-\dfrac{1}{27}\)
Giải:
+) \(\left(x-4\right)\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4.x+4^2\right)\)
\(=x^3-4^3\)
\(=x^3-64\)
+) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\left(\dfrac{1}{3}x+2y\right)\left[\left(\dfrac{1}{3}x\right)^2-\dfrac{1}{3}x.2y+\left(2y\right)^2\right]\)
\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\dfrac{1}{27}x^3+8y^3\)
+) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
+) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\)
\(=\left(x^2-\dfrac{1}{3}\right)\left[\left(x^2\right)^2+\dfrac{1}{3}.x^2+\left(\dfrac{1}{3}\right)^2\right]\)
\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)
\(=x^6-\dfrac{1}{27}\)
Vậy ...
\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\frac{1}{27}x^3+8y^3\)
a: \(\left(2x+3\right)^3=8x^3+36x^2+54x+27\)
b: \(\left(x-3y\right)^3=x^3-9x^2y+27xy^2-27y^3\)
a) \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)\) (sửa \(\dfrac{x}{2}\rightarrow x^2\))
\(=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3\)
\(=x^6-\dfrac{1}{27}\)
b) \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)\)
\(=\left(\dfrac{1}{3}x\right)^3+\left(2y\right)^3\)
\(=\dfrac{1}{27}x^3+8y^3\)
Lưu ý : Áp dụng hằng đẳng thức đáng nhớ \(a^3\pm b^3=...\)
\(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64\)
\(=x^3+64\)
\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)
\(=\)\(x^2-27y^3\)
\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)
\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)
làm nốt nha
Ta có: \(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3}xy+4y^2\right)\)
\(=\left(\frac{1}{3}x+2y\right)\left[\left(\frac{1}{3}x\right)^2-\left(\frac{1}{3}x\right)\cdot\left(2y\right)+\left(2y\right)^2\right]\)
\(=\left(\frac{1}{3}x\right)^3+\left(2y\right)^3=\frac{1}{27}x^3+8y^3\)