Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách giải của bạn Lê Nhật Khôi có phần khồn đúng nhưng nó đã gợi cho mình ý tưởng như này
\(HPT\Leftrightarrow\hept{\begin{cases}\left(1-x\right)\left(x^2+y^2+1\right)=y\\2y\left(y+3\right)^2=2-z\\\left(z-2\right)\left(z+1\right)^2=1-x\end{cases}}\)
\(\Rightarrow-2y\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)=y\Leftrightarrow y\left[2\left(y+3\right)^2\left(z+1\right)^2\left(x^2+y^2+1\right)+1\right]=0\)
\(\Rightarrow y=0\Rightarrow x=1\Rightarrow\orbr{\begin{cases}z=-1\\z=2\end{cases}}\)
Áp dụng BĐT Bunhiacốpxki dạng phân thức : x²/a + y²/b ≥ (x+y)²/(a+b)
Ta có :
3/(xy+yz+zx) + 2/(x²+y²+z²) = 6/(2xy+2yz+2zx) + 2/(x²+y²+z²)
≥ (√6+√2)²/(x+y+z)² = (√6+√2)² > 14 (đpcm).
Sửa đề: \(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge14\) với x, y > 0 và x + y = 1.
\(VT-VP=\frac{\left(x-y\right)^2\left[2\left(x-y\right)^2+xy\right]}{xy\left(x^2+y^2\right)}\ge0\)
Tổng quát hóa: Cho \(xy\left(2a-b\right)>0\) và x + y = t (t là hằng số)
Chứng minh: \(\frac{a}{xy}+\frac{b}{x^2+y^2}\ge\frac{4a+2b}{t^2}\)
Xét hiệu: \(VT-VP=\frac{\left(x-y\right)^2\left[a\left(x-y\right)^2+\left(2a-b\right)xy\right]}{xy\left(x+y\right)^2\left(x^2+y^2\right)}\)
P/s: Bài toán trên là trường hợp đặt biệt của bài bên dưới khi a= 2;b=3;t=1
\(ĐK:x\ge-2;y\le4\)
\(PT\left(1\right)\Leftrightarrow\left(x^3-3x^2+3x-1\right)-\left(y^3-6y^2+12y-8\right)=0\\ \Leftrightarrow\left(x-1\right)^3-\left(y-2\right)^3=0\\ \Leftrightarrow\left(x-y+1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y-2\right)+\left(y-2\right)^2\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}x-y+1=0\\x^2-4x+xy+y^2-5y+7=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left(x^2+\dfrac{1}{4}y^2+4+xy-2y-4x\right)+\dfrac{3}{4}y^2-3y+3=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y^2-4y+4\right)=0\\ \Leftrightarrow\left(x+\dfrac{1}{2}y-2\right)^2+\dfrac{3}{4}\left(y-2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Thay \(x=1;y=2\) vào PT(2) ta thấy ko thỏa mãn
Với \(x-y+1=0\Leftrightarrow y=x+1\), thay vào PT(2)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{3-x}=x^3+x^2-4x-1\left(-2\le x\le3\right)\\ \Leftrightarrow\sqrt{x+2}+\sqrt{3-x}-3=x^3+x^2-4x-4\\ \Leftrightarrow\dfrac{2\sqrt{\left(x+2\right)\left(3-x\right)}-4}{\sqrt{x+2}+\sqrt{3-x}+3}=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow\dfrac{2\left[\left(x+2\right)\left(3-x\right)-4\right]}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=\left(x^2-x-2\right)\left(x+2\right)\\ \Leftrightarrow\left(x^2-x-2\right)\left(x+2\right)+\dfrac{2\left(x^2-x-2\right)}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[x+2+\dfrac{1}{\left(\sqrt{x+2}+\sqrt{3-x}+3\right)\left(\sqrt{\left(x+2\right)\left(3-x\right)}+2\right)}\right]=0\)
Với \(x\ge-2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=2\Rightarrow x=3\end{matrix}\right.\left(tm\right)\)
Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(-1;0\right);\left(2;3\right)\right\}\)