Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x khác + -2
A=( 1/(x-2) + 2x/(x-2)(x+2) +1/(x+2)) . (x-1)/2
=((x+2+2x+x-2)/(x-2)(x+2)).((x-1)/2)
=(4x/(x-2)(x+2)).(x-1)/2 =2x/ (x-1)(x-2)(x+2)
\(ĐKXĐ:x\ne2;x\ne4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)
\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)
\(\Leftrightarrow3x^2-17x+24=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)
\(\Leftrightarrow x=3;x=\frac{8}{3}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;\frac{8}{3}\right\}\)
ziết như câu hỏi
=> (x-4)(1+3x+1)=0
=.(x+4)(3x+2)=0
=>\(\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}=>\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}}\)
\(\left(x-4\right)+\left(x-4\right).\left(3x+1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(1+3x+1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\)
Vậy x = 4 hoặc x = 2/3
b) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)
<=> \(\frac{13\left(x+1\right)}{12}-\frac{5x+3}{6}=\frac{x+7}{12}\)
<=> 13(x + 1) - 2(5x + 3) = x + 7
<=> 13x + 13 - 10x - 6 = x + 7
<=> 3x + 7 = x + 7
<=> 3x + 7 - x = 7
<=> 2x + 7 = 7
<=> 2x = 7 - 7
<=> 2x = 0
<=> x = 0
c) 2x + 4(x - 2) = 5
<=> 2x + 4x - 8 = 5
<=> 6x - 8 = 5
<=> 6x = 5 + 8
<=> 6x = 13
<=> x = 13/6
Gọi thương của phép chia F(x) cho Q(x) là A(x)
Theo bài ra ta có: \(F\left(x\right)=x^4+ax^3+b=\left(x^2-1\right).A\left(x\right)\)
\(=\left(x-1\right)\left(x+1\right).A\left(x\right)\)
Do giá trị của biếu thức trên luôn đúng với mọi x nên lần lượt thay \(x=1;\)\(x=-1\)ta được:
\(\hept{\begin{cases}a+b+1=0\\-a+b+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=0\\b=-1\end{cases}}\)
Vậy....
Gọi thương của 2 đa thức trên là : R(x)
\(\Rightarrow x^4+ax^3+b=\left(x^2-1\right)R\left(x\right)\)
\(\Rightarrow x^4+ax^3+b=\left(x-1\right)\left(x+1\right)R\left(x\right)\)
Vì đẳng thức trên đúng với mọi x nên cho x = 1 và x = -1 ta có :
\(\hept{\begin{cases}x=1\Rightarrow1+a+b=0\Rightarrow a+b=-1\\x=-1\Rightarrow1-a+b=0\Rightarrow a-b=1\end{cases}}\)
\(\Rightarrow a=\left(1+-1\right):2=0\)
\(b=0-1=-1\)
x2.( x2 + 4 ) - x2 - 4
= x2.( x2 + 4 ) - ( x2 + 4 )
= ( x2 + 4 ).( x2 - 1 )
= ( x2 + 4 ) .( x - 1 ).( x + 1 )
2(x+4)(x-3)=0
=> (x+4)(x-3)=0
TH1: x+4=0 => x=-4
TH2: x-3=0=> x=3
vậy pt có nghiệm là ; -4;3
b) (x-1)2(3x-1)=0
TH1: x-1=0 => x=1
TH2:3x-1=0=>3x=1=>x=1/3
vậy pt có nghiệm là: 1;1/3
c) (2x/3 + 4)(2x-3) (x/2-1)=0
=> TH1: 2x/3 +4=0 => 2x/3 =-4 => 2x=-12 => x=-6
TH2: 2x-3=0 => 2x=3=>x=3/2
TH3:x/2 -1 =0 => x/2=1 => x=2
vậy pt có nghiệm là : -6;3/2;2
a, 2(x+4)(x-3)=0
(x+4)(x+3)=0
x+4=0 hoặc x+3=0
x=-4 hoặc x=-3
b,(x-1)^2(3x-1)=0
x-1=0 hoặc 3x-1=0
x=1 hoặc x=1/3
c,(2x/3+4)(2x-3)(x/2-1)=0
2x/3+4=0 hoặc 2x-3=0 hoặc x/2-1=0
x=6 hoặc x=3/2 hoặc x=2
\(\left(x+\frac{1}{4}\right)^2=x^2+2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2=x^2+\frac{1}{2}x+\frac{1}{16}\)
(x+1/4)^2
= x^2 + 1/2x + 1/16
nha bạn