Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
1.X2-2X-4y2-4y
=x2-2x+1-(4y2+4y+1)
=(x+1)2-(2y+1)2
=>(x+1-2y-1)(x+1+2y+1)
=(x-2y)(x+2y+2)
2.x4+2x3-4x-4
=(x2)2-22+2x3-4x
=(x2-2)(x2+2)+2x(x2-2)
=(x2-2)(x2+2+2x)
a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}=\frac{6.2}{2x\left(x+4\right)}+\frac{3x}{2x\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(x+4\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)
c) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5.y}{2y\left(y+2\right)}+\frac{2\left(y-2\right)}{2y\left(y+2\right)}=\frac{-5y+2y-4}{2y\left(y+2\right)}=\frac{-3y-4}{2y\left(y+2\right)}\)
d) \(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x\left(x-2y\right)}-\frac{3}{x\left(x-2y\right)}=\frac{x-1-3}{x\left(x-2y\right)}=\frac{x-4}{x\left(x-2y\right)}\)
1.
a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$
$=x^2+2x+4+\frac{10}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên.
Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$
$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$
b.
\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)
Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$
$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$
$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$
$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$
Bài 2:
$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.
$\Rightarrow P$ nguyên với mọi $x$ nguyên.
(2x - 1).(3 - x) + (x - 2).(x + 3) = (1 - x).(x - 3)
<=> -x2 + 8x - 9 = 3x - x2 - 2
<=> -x2 + 8x = 3x - x2 - 2 + 9
<=> -x2 + 8x = 3x - x2 - 7
<=> -x2 + 8x - (-x2 + 3x) = 3x - x2 - 7 - (-x3 + 3x)
<=> 5x = 7
<=> x = 5/7
=> x = 5/7
\(\left(2x-1\right)\left(3-x\right)+\left(x-2\right)\left(x+3\right)=\left(1-x\right)\)
\(-x^2+8x-9=3x-x^2-2\)
\(-x^2+8x=3x-x^2-7\)
\(5x=7\)
\(x=7:5\)
\(x=\frac{7}{5}\)
(2x - 1). (3 - x) + (x -2 ) . (x + 3) = ( 1-x ) . (x - 2)
<=>(2x - 1). (3 - x) = ( 1-x ) . (x - 2) - (x -2 ) . (x + 3)
<=>(2x - 1). (3 - x) = (x - 2) (1-x-x-3)
<=>(2x - 1). (3 - x) = (x - 2) (-2x-2)
\(\Leftrightarrow6x-2x^2-x+x=-2x^2-2x+4x+4\)
\(\Leftrightarrow-2x^2+2x^2+6x+2x-4x=4\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
P = (x + 1)3 + (x - 2)3 - 2x(x2 + 12)
P = x3 + 3x2 + 3x + 1 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
P = (x3 + x3 - 2x3) + (3x2 - 6x2) + (3x + 12x - 24x) + (1 - 8)
P = -3x2 - 9x - 7
P = -(3x2 + 9x + 7)
P = ( x + 1 )3 + ( x - 2 )3 - 2x( x2 + 12 )
= x3 + 3x2 + 3x + 1 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
= -3x2 - 9x - 7