Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đúng rồi bạn nhé! Đây là dạng toán quen thuộc nên có lẽ bạn trên viết nhầm đề nha!
ta có (x+1/2009 +1) + ( x+3/2007 + 1)- (x+5/2005 +1) - (x+7/1993 + 1) = 0
=>(x +100/ 2009) + (x+100/2007) - (x+100/2005)-(x+100/1993)
=> (x +100) * (1/2009 + 1/2007+ 1/2005 + 1/1993) = 0
=> x = -100
Bạn cứ tinh ý để ý đến phần tử và mẫu cộng lại bằng 100. Khi bạn bỏ phần x + 100 ra thì còn lại như trên. Sau đó lược bỏ còn lại x = -100
Mạn phép mk không chép đề , mk làm luôn nhé
\(\dfrac{x+1}{2009}+1+\dfrac{x+3}{2007}+1=\dfrac{x+5}{2005}+1+\dfrac{x+7}{1993}+1\)
⇔ \(\dfrac{x+2010}{2009}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2005}-\dfrac{x+2010}{1993}=0\)
⇔( x + 2010 )\(\left(\dfrac{1}{2009}+\dfrac{1}{2007}-\dfrac{1}{2005}-\dfrac{1}{1993}\right)=0\)
Ta thấy : \(\dfrac{1}{2009}< \dfrac{1}{2007}< \dfrac{1}{2005}< \dfrac{1}{1993}\)
⇒ \(\dfrac{1}{2009}+\dfrac{1}{2007}-\dfrac{1}{2005}-\dfrac{1}{1993}< 0\)
⇒ x + 2010 = 0
⇒ x = -2010
KL....
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:
\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý
b.
Đặt \(x+3=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)
\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)
\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)
Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.
Ta có: \(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+7}{2003}\)
\(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+3}{2007}+1=\frac{x+5}{2005}+1+\frac{x+7}{2003}+1\)
\(\Leftrightarrow\frac{x+1+2009}{2009}+\frac{x+3+2007}{2007}=\frac{x+5+2005}{2005}+\frac{x+7+2003}{2003}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}=\frac{x+2010}{2005}+\frac{x+2010}{2003}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}-\frac{x+2010}{2005}-\frac{x+2010}{2003}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\ne0\)
=> x + 2010 = 0
=> x = -2010
Vậy x = -2010
\(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+7}{2003}\)
\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+5}{2005}+1\right)+\left(\frac{x+7}{2003}+1\right)\)
\(\Leftrightarrow\left(\frac{x+2010}{2009}\right)+\left(\frac{x+2010}{2007}\right)=\left(\frac{x+2010}{2005}\right)+\left(\frac{x+2010}{2003}\right)\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2010=0\) ( Vì \(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\ne0\))
\(\Leftrightarrow x=-2010\)
Vậy tập nghiệm của phương trình là S = { -2010 } .
\(\frac{x-3}{2011}+\frac{x-5}{2009}+\frac{x-7}{2007}+\frac{x-9}{2005}=4\)
\(\Leftrightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)+\left(\frac{x-9}{2005}-1\right)=0\)
\(\Leftrightarrow\frac{x-2014}{2011}+\frac{x-2014}{2009}+\frac{x-2014}{2007}+\frac{x-2014}{2005}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2009}+\frac{1}{2007}+\frac{1}{2005}\right)=0\)
|________________A________________|
Do A > 0
nên x - 2014 = 0
<=> x = 2014
Ta có :
\(\frac{x-5}{2009}+\frac{x-7}{2007}=\frac{x-9}{2005}+\frac{x-11}{2003}\)
\(\Leftrightarrow\)\(\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)=\left(\frac{x-9}{2005}-1\right)+\left(\frac{x-11}{2003}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-2014}{2009}+\frac{x-2014}{2007}=\frac{x-2014}{2005}+\frac{x-2014}{2003}\)
\(\Leftrightarrow\)\(\frac{x-2014}{2009}+\frac{x-2014}{2007}-\frac{x-2014}{2005}-\frac{x-2014}{2003}=0\)
\(\Leftrightarrow\)\(\left(x-2014\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\ne0\)
Nên \(x-2014=0\)
\(\Rightarrow\)\(x=2014\)
Vậy \(x=2014\)
Chúc bạn học tốt ~
\(\frac{x-5}{2009}+\frac{x-7}{2007}=\frac{x-9}{2005}+\frac{x-11}{2003}\)
Trừ cả 2 vế cho 2 ta được :
\(\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)=\left(\frac{x-9}{2005}-1\right)+\left(\frac{x-11}{2003}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2009}+\frac{x-2014}{2007}=\frac{x-2014}{2005}+\frac{x-2014}{2003}\)
\(\Leftrightarrow\frac{x-2014}{2009}+\frac{x-2014}{2007}-\frac{x-2014}{2005}-\frac{x-2014}{2003}=0\)
\(\Leftrightarrow\left(x-2014\right)\times\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\right)=0\)
Mà : \(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}=\frac{x+4}{2007}+\frac{x+5}{2006}+\frac{x+6}{2005}\)
<=> \(\frac{x+1}{2010}+1+\frac{x+2}{2009}+1+\frac{x+3}{2008}+1=\frac{x+4}{2007}+1+\frac{x+5}{2006}+1+\frac{x+6}{2005}+1\)
<=> \(\frac{x+2011}{2010}+\frac{x+2011}{2009}+\frac{x+2011}{2008}-\frac{x+2011}{2007}-\frac{x+2011}{2006}-\frac{x+2011}{2005}\) =0
<=> (x+2011).(\(\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}-\frac{1}{2005}\) )=0
<=> x+2011=0
<=> x=-2011
Vậy pt có nghiệm là x=-2011
Giải các phương trình:
\(\dfrac{x-3}{2011}+\dfrac{x-5}{2009}+\dfrac{x-7}{2007}+\dfrac{x-9}{2005}=4\)
\(\dfrac{x-3}{2011}+\dfrac{x-5}{2009}+\dfrac{x-7}{2007}+\dfrac{x-9}{2005}=4\)
\(\Leftrightarrow\dfrac{x-3}{2011}+\dfrac{x-5}{2009}+\dfrac{x-7}{2007}+\dfrac{x-9}{2005}-4=0\)
\(\Leftrightarrow\left(\dfrac{x-3}{2011}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-7}{2007}-1\right)+\left(\dfrac{x-9}{2005}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2014}{2011}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2007}+\dfrac{x-2014}{2005}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2007}+\dfrac{1}{2005}\right)=0\)
\(\Leftrightarrow x-2014=0\) ( do \(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2007}+\dfrac{1}{2005}\ne0\))
\(\Leftrightarrow x=2014\)
Vậy phương trình có nghiệm S=\(\left\{2014\right\}\)
\(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+7}{2003}\)'
\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+5}{2005}+1\right)+\left(\frac{x+7}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}=\frac{x+2010}{2005}+\frac{x+2010}{2003}\)
\(\Rightarrow x+2010=0\Leftrightarrow x=-2010\left(vì:\frac{1}{2009}+\frac{1}{2007}< \frac{1}{2005}+\frac{1}{2003}\right)\)