K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

x + 1 - 32 = -2x + 1

x + 2x = 1 - 1 + 32

3x = 32

x = 32/3

Bài làm 

\(x+1-32=-2x+1\)

\(\Leftrightarrow x-31=-2x+1\Leftrightarrow3x=32\Leftrightarrow x=\frac{32}{3}\)

28 tháng 8 2016

2x.(x-1/7)=1/7

=>x.(x-1/7)=1/7:2

=>x.(x-1/7)=1/14

=>...

8 tháng 11 2017

x(x-y)-2(x-y)=11

(x-y)(x-2)=11

tiếp tục làm bạn nha

8 tháng 7 2017

a) Ta có : |2x - 5| = x + 1

\(\Leftrightarrow\orbr{\begin{cases}2x-5=-x-1\\2x-5=x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x+x=-1+5\\2x-x=1+5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=4\\x=6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=6\end{cases}}\)

8 tháng 7 2017

mik ko pc

10 tháng 9 2016

a)Ta có: (2x - 1)6 = (2x - 1 )8

=> (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) = (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1) . (2x - 1)

=> 2x - 1 = 0; 1

+ Nếu 2x - 1 = 0

=> 2x = 1 

=> x = 1/2 

+ Nếu 2x - 1 = 1

=> 2x = 2

=> x = 1

2 tháng 12 2016

Ta có : A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

\(\Rightarrow\)3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2).....n.(n+1).[(n+2)-(n-1)]

\(\Rightarrow\)3A= 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+n.(n+1)(n+2)-(n-1)n(n+1)

\(\Rightarrow\)3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+....+[(n-1).n.(n+1)-(n-1)n(n+1)]+n.(n+1)(n+2)

\(\Rightarrow\)3A=n.(n+1)(n+2)

\(\Rightarrow\)A=\(\frac{\text{n.(n+1)(n+2)}}{3}\)

17 tháng 6 2024

Tại sao có 3A

10 tháng 4 2017

đa thức trên không có nghiệm vì

với mọi x=a ( dương) thì 2a^4+3a+1 luôn luôn > 0

28 tháng 9 2016

\(\Leftrightarrow-\frac{1}{6}< -\frac{1}{3}x+2< \frac{1}{6}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}x+2>-\frac{1}{6}\\-\frac{1}{3}x+2< \frac{1}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{13}{2}\\x>\frac{11}{2}\end{cases}\Leftrightarrow\frac{11}{2}< x< \frac{13}{2}}\)

vậy

Xét 2 Th nha :

 Th1 : \(\left|-\frac{1}{3}x+2\right|< 0\)

PT trở thành : \(\frac{1}{3}x-2< \frac{1}{6}\)

\(\Rightarrow\frac{1}{3}x< \frac{13}{6}\)

\(\Rightarrow x< \frac{13}{2}\)

Th2 : \(\left|-\frac{1}{3}x+2\right|\ge0\)

\(\Rightarrow\frac{-1}{3}x+2< \frac{1}{6}\)

\(\Rightarrow\frac{-1}{3}x< \frac{-11}{6}\)

\(\Rightarrow x>\frac{11}{2}\)

Tự kết luận nha . Nhớ xét điều kiện nha

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

8 tháng 10 2016

\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)

\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)

\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)

\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)

Vậy ...