\(^3\)-y\(^3\)-3xy bằng bao nhiêu

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

\(x^3-y^3-3xy\)

\(=x^3-y^3-3xy\left(x-y\right)\)

\(=\left(x-y\right)^3=1\)

20 tháng 10 2016

Theo giả thiết:

\(x-y=1\Rightarrow x-1=y\Rightarrow\left(x-1\right)^3=y^3\Rightarrow x^3-3x^2+3x-1=y^3\Rightarrow x^3-y^3-3xy=3x^2-3x+1-3xy\)

\(\Rightarrow x^3-y^3-3xy=3x\left(x-1-y\right)+1=3x\left[\left(x-y\right)-1\right]+1=0+1=1\)

25 tháng 8 2018

M = ( x - y )3 - ( x - y )2 

   = 73 - 72 = 294

N = x3 + x2  - y2 + y2 + xy - 3x2y +3xy2 - 3xy - 95

  = ( x - y )3 + ( x - y )2 - 95

  = 73 + 72 - 95 = 297

Mình không chép lại đề nhé !

Bạn chép sai đề rồi , câu b ( x - y + 1 ) mới đúng nha

7 tháng 10 2016

Phan Văn Hiếu Bài của bạn ngay từ dòng đầu đã sai hướng làm rồi nhé :)

Ta có :

\(x^3+y^3+3xy\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+3xy-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)

Thay \(x+y=1;\) có :

\(=1^3-3xy\left(1-1\right)\)

\(=1-0\)

\(=1\)

Vậy ...

7 tháng 10 2016

\(x^3+y^3+3xy=\left(x+y\right)\left(x^2+xy+y^2\right)+3xy\)

\(=x^2+2xy+y^2+2xy\)

\(=2xy\)

đế đây mk chịu

30 tháng 5 2019

a.\(x^3+y^3+3xy=x^3+y^3+3xy\left(x+y\right)=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1\)

b.\(x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1\)

3 tháng 10 2020

a) x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 1 - 3xy.0

= 1

b) x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1

17 tháng 7 2018

1/ a/ \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)\left(x^2+2xy+b^2\right)=x^3+2x^2y+x^2y+xy^2+2xy^2+y^3=x^3+3x^2y+3xy^2+y^3\)

b/ \(\left(x-y\right)^3=\left(x-y\right)\left(x-y\right)^2=\left(x-y\right)\left(x^2-2xy+y^2\right)=x^3-2x^2y-x^2y+2xy^2+xy^2-y^3=x^3-3x^2y+3xy^2+y^3\)2/

a/ \(x\left(8x-2\right)-8x^2+12=0\)

\(\Leftrightarrow8x^2-2x-8x^2+12=0\)

\(\Leftrightarrow-2x+12=0\)

\(\Leftrightarrow x=6\)

Vậy ...

b/ \(\left(x-1\right)^3-x\left(x^2-3x+1\right)=18\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3+3x^2-x=18\)

\(\Leftrightarrow2x-1=18\)

\(\Leftrightarrow x=\dfrac{19}{2}\)

Vậy...

3/ a, \(25-x^2=5^2-x^2=\left(5-x\right)\left(5+x\right)\)

b/ \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)

c/ \(9x^2+6xy+y^2=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)

20 tháng 7 2016

\(C=\left(x^3+y^3\right)+3xy\left(x^2+y^2+2xy\left(x+y\right)\right)\)

\(C=\left(x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2\right)+3xy\left(x^2+y^2+2xy\right)\) (vì x+y=1)

\(C=\left(x+y\right)^3-3x^2y-3xy^2+3xy\left(x+y\right)^2\)

\(C=1^3-3xy\left(x+y\right)+3xy.1^2\) (vì x+y=1)

\(C=1-3xy+3xy\)(vì x+y=1)

\(C=1\)

\(D=2\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-3\left(\left(x+y\right)^2-2xy\right)\)

\(D=2\left(1^3-3xy\right)-3\left(1^2-2xy\right)\)(vì x+y=1)

\(D=2-6xy-3+6xy\)

\(D=-1\)

16 tháng 7 2018

Câu a : Ta có :

\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy=x^2-xy+y^2+3xy=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

Câu b : Ta có :

\(x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

8 tháng 10 2016

Có: \(x-y=1\)

\(x^3-y^3-3xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\) 

\(=x^2+xy+y^2-3xy\)

\(=x^2-2xy+y^2\)

\(=\left(x-y\right)^2\)

\(=1\)