Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
`P(x)=x^2+5x^4-3x^2+x^2+4x^4+3x^3-x+5`
`=(5x^4+4x^4)+3x^3+(x^2-3x^2+x^2)-x+5`
`=9x^4+3x^3-x^2-x-5`
`Q(x)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1`
`=-x^4+(4x^3-5x^3)-(x^2+x^2)+(x+3x)-1`
`=-x^4-x^3+4x-1`
`P(x)+Q(x)=9x^4+3x^3-x^2-x-5-x^4-x^3+4x-1`
`=(9x^4-x^4)+(3x^3-x^3)-x^2-(x-4x)-(5+1)`
`=8x^4+2x^3-x^2-5x-6`
`P(x)-Q(x)=9x^4+3x^3-x^2-x-5+x^4+x^3-4x+1`
`=(9x^4+x^4)+(3x^3+x^3)-x^2-(x+4x)-(5-1)`
`=10x^4+4x^3-x^2-5x-4`
\(a\\ -5x^2+3x.\left(x+2\right)=-5x^2+3x^2+6x=-2x^2+6x\\ b\\ -2x.\left(1-x^2\right)-2x^3=-2x+2x^3-2x^3=-2x\\ c\\ 4x.\left(x-1\right)-4.\left(x^2+2x-1\right)\\ =4x^2-4x-4x^2-8x+4=-12x+4\)
\(d\\ 6x^3-2x^2.\left(-x^2-3x\right)=6x^3+2x^4+6x^3=2x^4+12x^3\\ e\\ 3x.\left(x-1\right)-\left(1+2x\right).5x\\ =3x^2-3x-5x-10x^2=-7x^2-8x\\ f\\ -5x^2-\left(x-6\right).\left(-2x^2\right)=-5x^2+2x^3-12x^2=2x^3-17x^2\)
b. Ta có:
A(x) + B(x) = x2 + 2x + 1 + x2 + 1 = 2x2 + 2x + 2 (0.5 điểm)
A(x) - B(x) = x2 + 2x + 1 - (x2 + 1) = 2x (0.5 điểm)
a: \(=\dfrac{3x^4-12x^3+12x^3-48x^2+47x^2-168x+168x-672+673}{x-4}\)
\(=3x^3+12x^2+47x+168+\dfrac{673}{x-4}\)
b: \(=\dfrac{x^4-3x^3-7x^2+3x^3-9x^2-21x+15x^2-45x-105+53x+91}{x^2-3x-7}\)
\(=x^2+3x+15+\dfrac{53x+91}{x^2-3x-7}\)
c: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)
a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)
b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)
c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)
d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
`@` `\text {Ans}`
`\downarrow`
*Máy tớ cam hơi mờ, cậu thông cảm ._.*
Cậu viết lại rõ đề câu c, nhé.
a) Thu gọn và sắp xếp:
\(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)
\(P\left(x\right)=\left(5x^4+4x^4\right)-\left(3x^3-3x^3\right)+\left(x^2+x^2\right)-x+5\)
\(P\left(x\right)=9x^4+2x^2-x+5\)
\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)
\(Q\left(x\right)=x^4-\left(5x^3-4x^3\right)-\left(x^2+x^2\right)+\left(x+3x\right)-1\)
\(Q=x^4-x^3-2x^2+4x-1\)
b) \(P\left(x\right)+Q\left(x\right)\)
\(=\left(9x^4+2x^2-x+5\right)+\left(x^4-x^3-2x^2+4x-1\right)\)
\(=9x^4+2x^2-x+5+x^4-x^3-2x^2+4x-1\)
\(=\left(9x^4+x^4\right)-x^3+\left(2x^2-2x^2\right)-\left(x-4x\right)+\left(5-1\right)\)
\(=10x^4-x^3+3x+4\)
\(P\left(x\right)-Q\left(x\right)\)
\(=\left(9x^4+2x^2-x+5\right)-\left(x^4-x^3-2x^2+4x-1\right)\)
\(=9x^4+2x^2-x+5-x^4+x^3+2x^2-4x+1\)
\(=\left(9x^4-x^4\right)+x^3+\left(2x^2+2x^2\right)-\left(x+4x\right)+\left(5-1\right)\)
\(=8x^4+x^3+4x^2-5x+4\)
Đề yêu cầu tìm nghiệm
P(x) = x2 - 3x
P(x) = 0 <=> x2 - 3x = 0
<=> x( x - 3 ) = 0
<=> x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 3
Vậy nghiệm của P(x) là 0 và 3
Ta có
\(P\left(x\right)=x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)