Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{120}{x}-\dfrac{120}{y}=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{120}{10+y}-\dfrac{120}{y}=0,4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=10+y\\\dfrac{120y-1200-120y}{y\left(10+y\right)}=0,4\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow-3000=y^2+10y\\ \Leftrightarrow y^2+10y+3000=0\\\Leftrightarrow y^2+10y+25=-2975\\ \Leftrightarrow\left(y+5\right)^2=-2975\left(vô\:lí\right)\)
\(\Rightarrow\)pt vô nghiệm
vậy hệ phương trình đã cho vô nghiệm
giải hệ pt sau: \(\hept{\begin{cases}-x+y=-24\\\frac{120}{x}-\frac{120}{y}=\frac{5}{6}\end{cases}}\)
\(\left\{{}\begin{matrix}x-y=10\\\dfrac{-120\left(x-y\right)}{xy}=\dfrac{2}{5}\end{matrix}\right.\) \(\Rightarrow\dfrac{-1200}{xy}=\dfrac{2}{5}\Rightarrow xy=-3000\)
Ta được hệ: \(\left\{{}\begin{matrix}x-y=10\\xy=-3000\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=y+10\\xy=-3000\end{matrix}\right.\)
Thay pt trên vào dưới:
\(\left(y+10\right).y=-3000\Rightarrow y^2+10y+3000=0\)
\(\Rightarrow\) pt vô nghiệm
Vậy hệ đã cho vô nghiệm
\(\left\{{}\begin{matrix}X+44=Y\\\dfrac{120}{X}+\dfrac{11}{30}=\dfrac{120}{Y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}X=Y-44\\3600Y+11XY=3600X\end{matrix}\right.\)
\(3600Y+11\left(Y-44\right)Y=3600\left(Y-44\right)\\ =11Y^2-484Y+158400 =0\)
\(\Delta'=\left(-242\right)^2-158400.11=-1683836\)
=> DO \(\Delta'>0\) nên pt vô nghiệm
x + x * 2,7 + x * 6,3 = 120
x * 1 + x * 27 + x * 63 = 120
x * ( 1 + 2,7 + 6,3 ) = 120
x * 10 = 120
x = 120 : 10
x = 12