Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{9-12x+4x^2}=4+x\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
th1: \(3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow\Leftrightarrow x\le\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow3-2x=4+x\Leftrightarrow3x=-1\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\)
th2: \(3-2x< 0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow2x-3=4+x\Leftrightarrow x=7\left(tmđk\right)\)
vậy \(x=\dfrac{-1}{3};x=7\)
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
th1: \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow2-x=x^2-x-5\)
\(\Leftrightarrow x^2=7\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{7}\left(loại\right)\\x=-\sqrt{7}\left(tmđk\right)\end{matrix}\right.\)
th2: \(2-x< 0\Leftrightarrow x>2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow x-2=x^2-x-5\)
\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(tmđk\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
vậy \(x=-\sqrt{7};x=3\)
a) \(\sqrt{9-12x+4x^2}=4+x\)
\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
\(\Leftrightarrow\left[{}\begin{matrix}3-2x=4+x\\3-2x=-4-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=7\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{3};x_2=7\).
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=x^2-x-5\\2-x=-x^2+x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=7\\x^2=2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\left(l\right)\\x=-\sqrt{7}\\x=3\\x=-1\left(l\right)\end{matrix}\right.\)
Vậy \(x_1=-\sqrt{7};x_2=3\).
1. \(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy...
2. \(2x^2+2x+1=\sqrt{4x+1}\)
\(\Leftrightarrow2x^2+2x+1-\sqrt{4x+1}=0\)
\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)
\(\Leftrightarrow4x+1-2\sqrt{4x+1}+1+4x^2=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-1\right)^2+4x^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=1\\2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x+1=1\\x=0\end{matrix}\right.\)\(\Leftrightarrow x=0\)
Vậy...
3. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\frac{x+3}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1=\frac{x+3}{2}\)
Đặt \(\sqrt{x-1}=a\)
\(\Leftrightarrow x-1=a^2\Leftrightarrow x+3=a^2+4\)
\(pt\Leftrightarrow\left|a-1\right|+a+1=\frac{a^2+4}{2}\)
+) Xét \(a\le1\Leftrightarrow a-1\le0\Leftrightarrow1\le x\le2\)
\(pt\Leftrightarrow1-a+a+1=\frac{a^2+4}{2}\)
\(\Leftrightarrow2=\frac{a^2+4}{2}\)
\(\Leftrightarrow a^2+4=4\)
\(\Leftrightarrow a=0\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\) ( thỏa )
+) Xét \(a\ge1\Leftrightarrow a-1\ge0\Leftrightarrow x>2\)
\(pt\Leftrightarrow a-1+a+1=\frac{a^2+3}{2}\)
\(\Leftrightarrow2a=\frac{a^2+3}{2}\)
\(\Leftrightarrow a^2+3=4a\)
\(\Leftrightarrow a^2-4a+3=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loai\right)\\x=10\left(thoa\right)\end{matrix}\right.\)
Vậy...
a, \(\Leftrightarrow\sqrt{\left(3-2x\right)^2=4+x}\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
\(\Leftrightarrow\orbr{\begin{cases}3-2x=4+x\\3-2x=-4-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=\sqrt{7}\\x=-\sqrt{7}\end{cases}}\\\left(x-3\right)\left(x-1\right)=0\end{cases}}\)
ĐKXĐ: a>=6
\(\dfrac{a-7}{\sqrt{a-6}+1}=\sqrt{a-6}-1\)
\(A=\dfrac{\left|a-5\right|}{5-a}+\sqrt{a-6}\)
\(=\dfrac{a-5}{5-a}+\sqrt{a-6}=\sqrt{a-6}-1\)(ĐPCM)
\(\left(x+y+x\right)^3\)=\(\left(2x+y\right)^3\)=\(\left(2x\right)^3\)+3.\(\left(2x\right)^2\).y+3.2x.\(y^2\)+\(y^3\)
=8\(x^3\)+12\(x^2\)y+6x\(y^2\)+\(y^3\)
\(\left(x+y+z\right)^3\)=\(\left[\left(x+y\right)+z\right]^3\)=\(\left(x+y\right)^3\)+3.\(\left(x+y\right)^2\).z+3.\(\left(x+y\right)^{ }\).\(z^2\)+\(z^3\)
=\(x^3\)+3\(x^2y\)+3x\(y^{^{ }2}\)+\(y^3\)+3.(\(x^2\)+2xy+\(y^2\)).z+ 3x\(z^2\)+3y\(z^2\)+\(z^3\)
=\(x^3\)+3\(x^2y\)+3x\(y^{^{ }2}\)+\(y^3\)+3\(x^2\)z+6xyz+3\(y^2\)z+3x\(z^2\)+3y\(z^2\)+\(z^3\)
\(x-\sqrt{4x-3}=2\)
đặt \(T=\sqrt{4x-3}\)
\(\Leftrightarrow\left(x-T\right)^2-4=0\Leftrightarrow\left(x-T-2\right)\left(x-T+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=T+2\\x=T-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{4x-3}+2\\x=\sqrt{4x-3}-2\end{matrix}\right.\)
Vậy nghiệm của pt là \(\left[{}\begin{matrix}x=\sqrt{4x-3}+2\\x=\sqrt{4x-3}-2\end{matrix}\right.\)
\(X=7-2\sqrt{6}\)
\(X=\left(\sqrt{6}\right)^2-2\sqrt{6}.1+1\)
\(X=\left(\sqrt{6}-1\right)^2\)