Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)
\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)
\(=2^4.5+2-5^2\)
\(=57\)
b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)
\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)
c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)
\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)
\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)
1 x mũ 2 + 4xy + 4y mũ 2 = x^2 + 4xy + 4y^2 =(2y+x)^2
2, 4x mũ 2 - 36y mũ 2 =4x^2 -36y^2 = -4 (3y-x) (3y+x)
6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x =x (x+2) (x^2-6x+4)
8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2 = -(y-x^2-x) (y+x^2+x)
10, 4x mũ 2 ( x + y ) -x - y = (2x-1) (2x+1) (y+x)
\(a.\frac{x^3+6x^2+2x-3}{x^2+5x-3}=\frac{\left(x+1\right)\left(x^2+5x-3\right)}{x^2+5x-3}=x+1\)
\(b.\frac{x^3-3x^2+x-3}{x-3}=\frac{\left(x-3\right)\left(x^2+1\right)}{x-3}=x^2+1\)
\(c.\frac{x^2+3x-10}{x-2}=\frac{\left(x-2\right)\left(x+5\right)}{x-2}=x+5\)
6, \(x^2-1+2xy+y^2=\left(x+y\right)^2-1=\left(x+y-1\right)\left(x+y+1\right)\)
7, \(4x^2-12x+9-y^2=\left(2x-3\right)^2-y^2=\left(2x-3-y\right)\left(2x-3+y\right)\)
8, \(16x^2-4y^2+4y-1=16x^2-\left(2y-1\right)^2=\left(4x-2y+1\right)\left(4x+2y-1\right)\)
9, \(25-x^2-12x-36=25-\left(x+6\right)^2=\left(5-x-6\right)\left(5+x+5\right)=-\left(x+1\right)\left(x+10\right)\)
10, \(x^2-9-5\left(x+3\right)=\left(x-3\right)\left(x+3\right)-5\left(x+3\right)=\left(x+3\right)\left(x-8\right)\)
\(x^2+\left(x-2\right)^2=10^2\)
\(\Leftrightarrow x^2+x^2-2\cdot2\cdot x+2^2-10^2=0\)
\(\Leftrightarrow2x^2-4x-96=0\)
\(\Delta'=b'^2-ac=\left(-2\right)^2-2\cdot\left(-96\right)=4+192=196\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{2+\sqrt{196}}{2}=8\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{2-\sqrt{196}}{2}=-6\)
Vậy \(S=\left\{8;-6\right\}\)
\(x^2+\left(x-2\right)^2=10^2\)
\(\Leftrightarrow x^2+\left(x-2\right)^2=100\)
\(\Leftrightarrow x^2+x^2-4x+4-100=0\)
\(\Leftrightarrow2x^2+4x-96=0\Leftrightarrow2\left(x-6\right)\left(x+8\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+8=0\Leftrightarrow x=-8\)