Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
\(P\left(x\right)-R\left(x\right)=6x^2-3x+2+3x^2-7x+5\)
\(=9x^2-10x+7\)
mà \(P\left(x\right)+R\left(x\right)=-x^2-4x+3\)
nên \(P\left(x\right)=\dfrac{9x^2-10x+7-x^2-4x+3}{2}\)
\(=\dfrac{8x^2-14x+10}{2}=4x^2-7x+5\)
\(R\left(x\right)=9x^2-10x+7-4x^2+7x-5=5x^2-3x+2\)
\(Q\left(x\right)=-3x^2+7x-5-5x^2+3x-2=-8x^2+10x-7\)
Cộng 3 đẳng thức vế với vế ta có:
\(2\left(P\left(x\right)+Q\left(x\right)+R\left(x\right)\right)=6x^2-3x+2-3x^2+7x-5-x^2-4x+3\)
=>\(2\left(P\left(x\right)+Q\left(x\right)+R\left(x\right)\right)=2x^2\)
=> \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=x^2\)
=>\(\hept{\begin{cases}R\left(x\right)=x^2-\left(6x^2-3x+2\right)=-5x^2+3x-2\\P\left(x\right)=x^2-\left(-3x^2+7x-5\right)=4x^2-7x+5\\Q\left(x\right)=x^2-\left(-x^2-4x+3\right)=2x^2+4x-3\end{cases}}\)
\(P\left(x\right)=4x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=-x^4-5x^2-8x-\dfrac{3}{4}\)
a: \(R\left(x\right)=P\left(x\right)-Q\left(x\right)=3x^4+7x^2+\dfrac{5}{4}\)
b: \(R\left(x\right)=3x^4+7x^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)
nên R(X) không có nghiệm
\(P\left(x\right)+Q\left(x\right)-R\left(x\right)=2x^3+6x^2-5x+x^3-4x^3+3-5x^2+3x^3-x+4\)
\(=\left(2x^3+x^3-4x^3+3x^3\right)+\left(6x^2-5x^2\right)-\left(5x+x\right)+\left(3+4\right)\)
\(=2x^3+x^2-6x+7\)
Vậy \(P\left(x\right)+Q\left(x\right)-R\left(x\right)=2x^3+x^2-6x+7\)
P(x)+Q(x)-R(x)
=-5x^3+7x^2-2x+8+4x^3-7x+3-6x^3-4
=-7x^3+7x^2-9x+7