K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 10 2019

Bài 2:

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow \left\{\begin{matrix} a^{100}(a-1)+b^{100}(b-1)=0(1)\\ a^{101}(a-1)+b^{101}(b-1)=0(2)\end{matrix}\right.\)

\(\Rightarrow a^{101}(a-1)-a^{100}(a-1)+b^{101}(b-1)-b^{100}(b-1)=0\) (lấy $(2)-(1)$)

\(\Leftrightarrow a^{100}(a-1)^2+b^{100}(b-1)^2=0\)

Dễ thấy \(a^{100}(a-1)^2\geq 0; b^{100}(b-1)^2\geq 0, \forall a,b\)

Do đó để tổng của chúng là $0$ thì \(a^{100}(a-1)^2=b^{100}(b-1)^2=0\)

Kết hợp với $a,b$ dương nên $a=b=1$

$\Rightarrow P=a^{2007}+b^{2007}=2$

AH
Akai Haruma
Giáo viên
7 tháng 10 2019

Bài 1:

Vì $a_i\in \left\{\pm 1\right\}$ nên $a_ia_j\in \left\{\pm 1\right\}$ với mọi $i,j=\overline{1,n}$. Khi đó:

Để tổng gồm $n$ số hạng $a_1a_2+a_2a_3+...+a_na_1=0$ thì $n$ phải chẵn và trong tổng trên có $\frac{n}{2}$ số hạng có giá trị $1$ và $\frac{n}{2}$ số hạng có giá trị $-1$

\(\Rightarrow a_1a_2.a_2a_3....a_na_1=(1)^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=(-1)^{\frac{n}{2}}\)

\(\Leftrightarrow (a_1a_2...a_n)^2=(-1)^{\frac{n}{2}}\)

Vì $(a_1a_2...a_n)^2$ luôn không âm nên $(-1)^{\frac{n}{2}}$ không âm.

$\Rightarrow \forall n\in\mathbb{N}^*$ thì $\frac{n}{2}$ chẵn

$\Rightarrow n\vdots 4$

Mà $2006\not\vdots 4$ nên $n$ không thể là $2006$

NV
13 tháng 5 2020

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{2}\\x_1x_2=-\frac{1}{2}\end{matrix}\right.\)

\(A=\frac{x_1}{2x_2-1}+\frac{x_2}{2x_1-1}=\frac{x_1\left(2x_2-1\right)+x_2\left(2x_1-1\right)}{\left(2x_1-1\right)\left(2x_2-1\right)}\)

\(=\frac{4x_1x_2-\left(x_1+x_2\right)}{4x_1x_2-2\left(x_1+x_2\right)+1}=\frac{4.\left(-\frac{1}{2}\right)-\frac{5}{2}}{4.\left(-\frac{1}{2}\right)-2.\left(\frac{5}{2}\right)+1}=...\)

\(B=\frac{1}{\left(x_1+2\right)^2}+\frac{1}{\left(x_2+2\right)^2}=\frac{\left(x_1+2\right)^2+\left(x_2+2\right)^2}{\left(x_1+2\right)^2\left(x_2+2\right)^2}=\frac{x_1^2+x_2^2+4\left(x_1+x_2\right)+4}{\left[x_1x_2+2\left(x_1+x_2\right)+4\right]^2}\)

\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)+4}{\left[x_1x_2+2\left(x_1+x_2\right)+4\right]^2}=...\)

Bạn tự thay số và bấm máy

13 tháng 5 2020

bạn ơi cái biểu thức A lẽ ra quy đồng phải nhân chéo chứ sao bạn lấy tử nhân mẫu???

6 tháng 4 2019

Hệ thức vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\\x_1^2+x^2_2=\frac{61}{9}\end{matrix}\right.\)

\(A=\left(x_1-1\right)\left(x_2-1\right)+x_1^2+x_2^2=x_1x_2-x_1-x_2+1+x_1^2+x_2^2\)

\(A=x_1x_2-\left(x_1+x_2\right)+1+x_1^2+x_2^2=-2-\left(-\frac{5}{3}\right)+1+\frac{61}{9}=\frac{67}{9}\)

20 tháng 7 2017

Đặt  \(A\left(x\right)=\left(2+x+2x^3\right)^{15}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{45}x^{45}\)

Như vậy  \(A\left(0\right)=\left(2+0+2.0^3\right)^{15}=a_0+a_1.0+a_2.0^2+a_3.0^3+...+a_{45}.0^{45}=a_0\)

hay  \(a_0=\left(2+0+2.0^3\right)^{15}=2^{15}\)

Lại có  \(A\left(1\right)=\left(2+1+2.1^3\right)^{15}=a_0+a_1.1+a_2.1^2+a_3.1^3+...+a_{45}.1^{45}\)

                      \(=a_0+a_1+a_2+a_3+...+a_{45}=a_0+S=2^{15}+S\)

hay  \(2^{15}+S=\left(2+1+2.1^3\right)^{15}=5^{15}\)

\(\Rightarrow S=5^{15}-2^{15}\)

Câu a :

\(\Delta=4m^2-8m+4=4\left(m-1\right)^2>0\)

Nên pt sẽ có nghiệm theo x1 và x2

Theo hệ thức vi-ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=2m-1\end{matrix}\right.\)

\(\Rightarrow A=2\left[\left(2m\right)^2-2\left(2m-1\right)\right]-5\left(2m-1\right)\)

\(A=2\left(4m^2-4m+2\right)-10m+5\)

\(A=8m^2-8m+4-10m+5\)

\(A=8m^2-18m+9\)

Câu b :

Ta có :

\(8m^2-18m+9\)

\(=8\left(m^2-\dfrac{18}{8}+\dfrac{9}{8}\right)\)

\(=8\left(m^2-\dfrac{18}{8}+\dfrac{18}{8}-\dfrac{9}{8}\right)\)

\(=8\left[\left(m-\dfrac{9}{8}\right)^2-\dfrac{9}{8}\right]\)

Vậy \(MIN_A=-\dfrac{9}{8}\)

Dấu "=" xảy ra khi : \(m=\dfrac{9}{8}\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2017

Lời giải:

Điều kiện: \(\Delta'=m^2-(2m-1)\geq 0\Leftrightarrow (m-1)^2\geq 0\)

(luôn đúng với mọi số thực m)

Khi đó áp dụng hệ thức Viete:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-1\end{matrix}\right.\)

Ta có:

\(A=2(x_1^2+x_2^2)-5x_1x_2\)

\(=2[(x_1+x_2)^2-2x_1x_2]-5x_1x_2\)

\(=2(x_1+x_2)^2-9x_1x_2\)

\(=8m^2-9(2m-1)=8m^2-18m+9\)

\(=8\left(m-\frac{9}{8}\right)^2-\frac{9}{8}\)

Thấy rằng \((m-\frac{9}{8})^2\geq 0\forall m\in\mathbb{R}\Rightarrow A\geq \frac{-9}{8}\)

Vậy A đạt min khi \((m-\frac{9}{8})^2=0\Leftrightarrow m=\frac{9}{8}\) (thỏa mãn)

Vậy \(m=\frac{9}{8}\)