Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow \left\{\begin{matrix} a^{100}(a-1)+b^{100}(b-1)=0(1)\\ a^{101}(a-1)+b^{101}(b-1)=0(2)\end{matrix}\right.\)
\(\Rightarrow a^{101}(a-1)-a^{100}(a-1)+b^{101}(b-1)-b^{100}(b-1)=0\) (lấy $(2)-(1)$)
\(\Leftrightarrow a^{100}(a-1)^2+b^{100}(b-1)^2=0\)
Dễ thấy \(a^{100}(a-1)^2\geq 0; b^{100}(b-1)^2\geq 0, \forall a,b\)
Do đó để tổng của chúng là $0$ thì \(a^{100}(a-1)^2=b^{100}(b-1)^2=0\)
Kết hợp với $a,b$ dương nên $a=b=1$
$\Rightarrow P=a^{2007}+b^{2007}=2$
Bài 1:
Vì $a_i\in \left\{\pm 1\right\}$ nên $a_ia_j\in \left\{\pm 1\right\}$ với mọi $i,j=\overline{1,n}$. Khi đó:
Để tổng gồm $n$ số hạng $a_1a_2+a_2a_3+...+a_na_1=0$ thì $n$ phải chẵn và trong tổng trên có $\frac{n}{2}$ số hạng có giá trị $1$ và $\frac{n}{2}$ số hạng có giá trị $-1$
\(\Rightarrow a_1a_2.a_2a_3....a_na_1=(1)^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=(-1)^{\frac{n}{2}}\)
\(\Leftrightarrow (a_1a_2...a_n)^2=(-1)^{\frac{n}{2}}\)
Vì $(a_1a_2...a_n)^2$ luôn không âm nên $(-1)^{\frac{n}{2}}$ không âm.
$\Rightarrow \forall n\in\mathbb{N}^*$ thì $\frac{n}{2}$ chẵn
$\Rightarrow n\vdots 4$
Mà $2006\not\vdots 4$ nên $n$ không thể là $2006$
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{2}\\x_1x_2=-\frac{1}{2}\end{matrix}\right.\)
\(A=\frac{x_1}{2x_2-1}+\frac{x_2}{2x_1-1}=\frac{x_1\left(2x_2-1\right)+x_2\left(2x_1-1\right)}{\left(2x_1-1\right)\left(2x_2-1\right)}\)
\(=\frac{4x_1x_2-\left(x_1+x_2\right)}{4x_1x_2-2\left(x_1+x_2\right)+1}=\frac{4.\left(-\frac{1}{2}\right)-\frac{5}{2}}{4.\left(-\frac{1}{2}\right)-2.\left(\frac{5}{2}\right)+1}=...\)
\(B=\frac{1}{\left(x_1+2\right)^2}+\frac{1}{\left(x_2+2\right)^2}=\frac{\left(x_1+2\right)^2+\left(x_2+2\right)^2}{\left(x_1+2\right)^2\left(x_2+2\right)^2}=\frac{x_1^2+x_2^2+4\left(x_1+x_2\right)+4}{\left[x_1x_2+2\left(x_1+x_2\right)+4\right]^2}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)+4}{\left[x_1x_2+2\left(x_1+x_2\right)+4\right]^2}=...\)
Bạn tự thay số và bấm máy
Hệ thức vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\\x_1^2+x^2_2=\frac{61}{9}\end{matrix}\right.\)
\(A=\left(x_1-1\right)\left(x_2-1\right)+x_1^2+x_2^2=x_1x_2-x_1-x_2+1+x_1^2+x_2^2\)
\(A=x_1x_2-\left(x_1+x_2\right)+1+x_1^2+x_2^2=-2-\left(-\frac{5}{3}\right)+1+\frac{61}{9}=\frac{67}{9}\)
Đặt \(A\left(x\right)=\left(2+x+2x^3\right)^{15}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{45}x^{45}\)
Như vậy \(A\left(0\right)=\left(2+0+2.0^3\right)^{15}=a_0+a_1.0+a_2.0^2+a_3.0^3+...+a_{45}.0^{45}=a_0\)
hay \(a_0=\left(2+0+2.0^3\right)^{15}=2^{15}\)
Lại có \(A\left(1\right)=\left(2+1+2.1^3\right)^{15}=a_0+a_1.1+a_2.1^2+a_3.1^3+...+a_{45}.1^{45}\)
\(=a_0+a_1+a_2+a_3+...+a_{45}=a_0+S=2^{15}+S\)
hay \(2^{15}+S=\left(2+1+2.1^3\right)^{15}=5^{15}\)
\(\Rightarrow S=5^{15}-2^{15}\)
Câu a :
\(\Delta=4m^2-8m+4=4\left(m-1\right)^2>0\)
Nên pt sẽ có nghiệm theo x1 và x2
Theo hệ thức vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=2m-1\end{matrix}\right.\)
\(\Rightarrow A=2\left[\left(2m\right)^2-2\left(2m-1\right)\right]-5\left(2m-1\right)\)
\(A=2\left(4m^2-4m+2\right)-10m+5\)
\(A=8m^2-8m+4-10m+5\)
\(A=8m^2-18m+9\)
Câu b :
Ta có :
\(8m^2-18m+9\)
\(=8\left(m^2-\dfrac{18}{8}+\dfrac{9}{8}\right)\)
\(=8\left(m^2-\dfrac{18}{8}+\dfrac{18}{8}-\dfrac{9}{8}\right)\)
\(=8\left[\left(m-\dfrac{9}{8}\right)^2-\dfrac{9}{8}\right]\)
Vậy \(MIN_A=-\dfrac{9}{8}\)
Dấu "=" xảy ra khi : \(m=\dfrac{9}{8}\)
Lời giải:
Điều kiện: \(\Delta'=m^2-(2m-1)\geq 0\Leftrightarrow (m-1)^2\geq 0\)
(luôn đúng với mọi số thực m)
Khi đó áp dụng hệ thức Viete:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=2m-1\end{matrix}\right.\)
Ta có:
\(A=2(x_1^2+x_2^2)-5x_1x_2\)
\(=2[(x_1+x_2)^2-2x_1x_2]-5x_1x_2\)
\(=2(x_1+x_2)^2-9x_1x_2\)
\(=8m^2-9(2m-1)=8m^2-18m+9\)
\(=8\left(m-\frac{9}{8}\right)^2-\frac{9}{8}\)
Thấy rằng \((m-\frac{9}{8})^2\geq 0\forall m\in\mathbb{R}\Rightarrow A\geq \frac{-9}{8}\)
Vậy A đạt min khi \((m-\frac{9}{8})^2=0\Leftrightarrow m=\frac{9}{8}\) (thỏa mãn)
Vậy \(m=\frac{9}{8}\)