Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x-5=0
=>2x=5
hay x=5/2
b: =>x(3x+1)=0
=>x=0 hoặc x=-1/3
c: =>(x+4+3)(x+4-3)=0
=>(x+7)(x+1)=0
=>x=-7 hoặcx=-1
\(\left|x-1\right|+\left|x+5\right|=\left|x-1\right|+\left|-x-5\right|\)
\(\Rightarrow\left|x-1\right|+\left|x+5\right|\ge\left|x-1-x-5\right|\)
\(\Rightarrow\left|x-1\right|+\left|x+5\right|\ge\left|-6\right|=6\)
dấu "=" xảy ra khi \(\left(x-1\right).\left(x+5\right)\ge0\)
\(\Rightarrow-5\le x\le1\)
Vậy x={-5,-4,-3,-2,-1,0,1}
b) \(\hept{\begin{cases}\left(2x-y+3\right)^4\ge0\\\left|y+2\right|\ge0\end{cases}}\)
mà \(\left(2x-y+3\right)^4+\left|y+2\right|=0\)
dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2x-y+3\right)^4=0\\\left|y+2\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-2\end{cases}}\)
vậy \(x=-\frac{5}{2},y=-2\)
∣x−1∣+∣x+5∣=∣x−1∣+∣−x−5∣
⇒∣�−1∣+∣�+5∣≥∣�−1−�−5∣⇒∣x−1∣+∣x+5∣≥∣x−1−x−5∣
⇒∣�−1∣+∣�+5∣≥∣−6∣=6⇒∣x−1∣+∣x+5∣≥∣−6∣=6
dấu "=" xảy ra khi (�−1).(�+5)≥0(x−1).(x+5)≥0
⇒−5≤�≤1⇒−5≤x≤1
Vậy x={-5,-4,-3,-2,-1,0,1}
b) \hept{(2�−�+3)4≥0∣�+2∣≥0\hept{(2x−y+3)4≥0∣y+2∣≥0
mà (2�−�+3)4+∣�+2∣=0(2x−y+3)4+∣y+2∣=0
dấu "=" xảy ra khi \hept{(2�−�+3)4=0∣�+2∣=0\hept{(2x−y+3)4=0∣y+2∣=0
⇒\hept{�=−52�=−2⇒\hept{x=−25y=−2
vậy �=−52,�=−2x=−25,y=−2
a) /2x/-/2,5/=/-7,5/
/2x/-(-2,5)=7,5
/2x/ =7,5+(-2,5)
/2x/ =5
2x=5 hoặc 2x= -5
x=5:2 x= -5:2
x=2,5 x= -2,5
Vậy x=2,5 hoặc x= -2,5
a^2+b^2/ 9+16=102/25
=>a^2=109/25.9=981/25=>a=căn 981/25
=>b^2=109/25.16=1744/25=>b= căn 1744/25
a2/9 = b2/6 = (a2+b2)/(9+6) = 102/15 = 6,8 (tính chất dãy tỉ số bằng nhau)
=> a2 = 6,8.9 = 61,2 = > a = \(\sqrt{61,2}\)
b2 = 6,8.16 = 108,8 => b = \(\sqrt{108,8}\)
a, A= 5 - 2x
Ta có: \(A=0\Rightarrow5-2x=0\)
\(\Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\)
Vậy nghiệm của đa thức A là \(\dfrac{5}{2}\)
b, \(B=6x^2+9x\)
Ta có: \(B=0\Rightarrow6x^2+9x=0\)
\(\Rightarrow3x.\left(3x+3\right)=0\)
\(\Rightarrow3x=0\text{hoặc}3x+3=0\)
\(\Rightarrow x=0\text{hoặc}3x=-3\)
\(\Rightarrow x=0\text{hoặc}x=-1\)
Vậy \(x\in\left\{-1;0\right\}\)là nghiệm của đa thức B
c, \(C=2x^2-50\)
Ta có: \(C=0\Rightarrow2x^2-50=0\)
\(\Rightarrow2x^2=50\)
\(\Rightarrow x^2=25\Rightarrow x=\pm5\)
Vậy \(x=\pm5\)là nghiệm của đa thức C
d, \(D=3x^4+x^2+1\)
Ta có: \(D=0\Rightarrow3x^4+x^2+1=0\)
Với mọi giá trị của \(x\in R\) ta có:
\(3x^4\ge0;x^2\ge0\Rightarrow3x^4+x^2\ge0\)
\(\Rightarrow3x^4+x^2+1\ge1>0\)
Hay D>0 với mọi giá trị của \(x\in R\)
Do đó không tìm được giá trị nào của x để đa thức D=0
Vậy đa thức D vô nghiệm
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
|x - 5| - |2x - 4| = 0
<=> |x - 5| = 0 + |2x - 4|
<=> |x - 5| = |2x - 4|
Xét 2 trường hợp: 2x - 4 = x - 5
2x - 4 = -(x - 5)
TH1: 2x - 4 = x - 5
<=> 2x - 4 - x = -5
<=> x - 4 = -5
<=> x = -5 + 4
<=> x = -1
TH2: 2x - 4 = -(x - 5)
<=> 2x - 4 = -x + 5
<=> 2x - 4 + x = 5
<=> 3x - 4 = 5
<=> 3x = 5 + 4
<=> 3x = 9
<=> x = 3
=> x = 3
Vậy: x = -1 hoặc x = 3
củm ơn bạn