Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-\dfrac{4}{5}\)
Đặt \(\sqrt{5x+4}=t\ge0\Rightarrow x=\dfrac{t^2-4}{5}\)
Pt trở thành:
\(\dfrac{t^2-4}{5}-t=2\)
\(\Leftrightarrow t^2-5t-14=0\Rightarrow\left[{}\begin{matrix}t=7\\t=-2< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{5x+4}=7\)
\(\Rightarrow5x+4=49\)
\(\Rightarrow x=9\)
Bạn xem lại đề xem cố sai sót gì ko rồi comment vào "Trả lời" nhé.
- Để hai đường thẳng trên song song thì :\(\left\{{}\begin{matrix}a=a,\\b\ne b,\end{matrix}\right.\)
hay \(\left\{{}\begin{matrix}m^2+1=5\\m\ne2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m=\pm2\\m\ne2\end{matrix}\right.\) => m = -2 .
Vậy ....
a/ PT <=> (x2 - 6x + 9) + (x - \(\sqrt{3x}\)) + (3 - \(\sqrt{3x}\)) = 0
<=> (\(\sqrt{x}-\sqrt{3}\))(\(\sqrt{3}x+x\sqrt{x}-3\sqrt{x}-3\sqrt{3}\)) + √x(\(\sqrt{x}-\sqrt{3}\)) + \(\sqrt{3}\left(\sqrt{3}-\sqrt{x}\right)\)= 0
<=> x = 3
Lời giải:
a) ĐK: \(x\geq 0\)
\(4\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
\(\Leftrightarrow 4\sqrt{x}-2\sqrt{9}.\sqrt{x}+\sqrt{16}.\sqrt{x}=5\)
\(\Leftrightarrow 4\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)
\(\Leftrightarrow 2\sqrt{x}=5\Rightarrow \sqrt{x}=\frac{5}{2}\Rightarrow x=\frac{25}{4}\) (thỏa man)
b) ĐK: \(x\geq -5\)
PT \(\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{x+5}+\frac{4}{3}\sqrt{9}.\sqrt{x+5}=6\)
\(\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow 3\sqrt{x+5}=6\Rightarrow \sqrt{x+5}=2\)
\(\Rightarrow x+5=2^2=4\Rightarrow x=-1\) (thỏa mãn)
ĐKXĐ: \(x\in R\)
\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)
=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)
=>x-2=0
=>x=2(nhận)
\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.
Bài 1:
Ta có: \(\left(2x^2+x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2+x-4-2x+1\right)\left(2x^2+x-4+2x-1\right)=0\)
\(\Leftrightarrow\left(2x^2-x-3\right)\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow\left(2x^2+2x-3x-3\right)\left(2x^2-2x+5x-5\right)=0\)
\(\Leftrightarrow\left[2x\left(x+1\right)-3\left(x+1\right)\right]\left[2x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-3\right)\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-3=0\\x-1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x=3\\x=1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{3}{2}\\x=1\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{3}{2};1;\frac{-5}{2}\right\}\)
\((x-4)^2=5x-20\\\Leftrightarrow (x-4)^2-5(x-4)=0\\\Leftrightarrow (x-4)(x-4-5)=0\\\Leftrightarrow (x-4)(x-9)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=9\end{matrix}\right.\)
Vậy: ...
\(\left(x-4\right)^2=5x-20\\ \Leftrightarrow\left(x-4\right)^2=5\left(x-4\right)\)
Ta xét 2 trường hợp:
+) TH1:
\(x-4=0\\ \Leftrightarrow x=4\)
+) TH2:
\(x-4\ne0\)
Khi đó:
\(x-4=5\left(x-4\right):\left(x-4\right)\\ \Leftrightarrow x-4=5\\ \Leftrightarrow x=4+5\\ \Leftrightarrow x=9\)
Vậy...