Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
a)
\(\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\frac{5}{2}\)
\(\Leftrightarrow3x^3-x^2+x-3x^2+x-1+4x^2-3x^3=\frac{5}{2}\)
\(\Leftrightarrow2x-1=\frac{5}{2}\Leftrightarrow2x=1+\frac{5}{2}=\frac{7}{2}\Leftrightarrow x=\frac{7}{4}\)
b)
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(\Leftrightarrow4\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
\(\Leftrightarrow8x+4-4x+1+8=11\Leftrightarrow4x+13=11\Leftrightarrow4x=-2\Leftrightarrow x=-\frac{1}{2}\)
c)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-7^2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow-4x+1+6x+9+245=0\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{255}{2}\).
a ) ( 3x2 - x + 1 ) ( x + 1 ) + x2 ( 4 - 3x ) = 5/2
=> 3x3 + 3x2 - x2 - x + x + 1 + 4x2 - 3x3 = 5/2
=> 6x2 + 1 = 5/2
=> 6x2 = 1,5
=> x2 = 0,25
=> x = 0,5
( x - 1 )( x + 2 ) - x - 2 = 0
<=> ( x - 1 )( x + 2 ) - ( x + 2 ) = 0
<=> ( x + 2 )( x - 2 ) = 0
<=> x = ±2
( 2x - 7 )3 = 8( 7 - 2x )2
<=> ( 2x - 7 )3 - 8( 2x - 7 )2 = 0
<=> ( 2x - 7 )2( 2x - 15 ) = 0
<=> x = 7/2 hoặc x = 15/2
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)
a, \(\left(x+2\right)^3-x\left(x^2+6x-3\right)=0\Leftrightarrow x^3+4x^2+4x+2x^2+8x+8-x^3-6x^2+3x=0\)
\(\Leftrightarrow15x+8=0\Leftrightarrow x=-\frac{8}{15}\)
b, \(\left(x+4\right)^3-x\left(x+6\right)^2=7\Leftrightarrow12x+64=0\Leftrightarrow x=-\frac{19}{4}\)làm tắt:P
Tự làm nốt nhé
1) tìm x :
5x. (x - 3 ) + 7.(x - 3 ) = 0
<=> ( x -3 ) . ( 5x +7 ) = 0
<=> x - 3 = 0 hoặc 5x + 7 = 0
<=> x = 3 hoặc x = -7/5
Vậy x € { 3 ; -7/5 }
3 ) chứng mình rằng :
7 1996 + 71995 + 71994 chia hết cho 57
71996 + 71995 + 71994
<=> 71994 . 72 + 71994 .7 + 71994
<=> 71994 . ( 72 + 7 + 1 )
<=> 71994 . 57 chia hết cho 57 ( vì 57 chia hết cho 57 ) ( đ..p.c.m )
Bài 1 : \(5x\left(x-3\right)+7\left(x-3\right)=0.\)
\(\Rightarrow5x^2-15x+7x-21=0\)
\(\Rightarrow5x^2-8x-21=0\)
\(\Rightarrow5x^2-15x+7x-21=0\)
\(\Rightarrow5x\left(x-3\right)+7\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{5}\end{cases}}}\)
Bài 2 : \(a,A=0\Rightarrow x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x\in\left\{0;3\right\}\)
\(b,A>0\Rightarrow x^2-3x>0\Rightarrow x\left(x-3\right)>0\)
TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)
TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)
C, tương tự
Bài 3 : \(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)\)
\(=7^{1994}.57\)\(⋮\)\(7\)
\(\Rightarrow7^{1996}+7^{1995}+7^{1994}⋮\)\(7\)