Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|x-3,4\right|+\left|2,6-x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3,4\right|=0\\\left|2,6-x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3,4=0\\2,6-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3,4\\x=2,6\end{matrix}\right.\) (loại)
Vậy ko tìm dc giá trị của x thõa mãn theo yêu cầu
\(Vì\left\{{}\begin{matrix}\left|x-3,4\right|\ge0\forall x\\\left|2,6-x\right|\ge0\forall x\end{matrix}\right.\)
Để |x - 3,4| + |2,6 -x| = 0
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-3,4\right|=0\\\left|2,6-x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3,4\\x=2,6\end{matrix}\right.\) (Vô lí vì x ko thể nhận 2 giá trị cùng 1 lúc)
Vậy ko có giá trị nào của x thỏa mãn
|x - 3,4| + |2,6 - x| = 0
\(\hept{\begin{cases}x-3,4=0\\2.6-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3,4\\x=2,6\end{cases}}\)
k nha bn
| x-3.4 | + | 2.6 - x | = 0
=> | x-12 | + | 12-x | = 0
Lại có: \(\left|x-12\right|\ge0\)
\(\left|12-x\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-12\right|=0\\\left|12-x\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-12=0\\12-x=0\end{cases}\Rightarrow x=12}\)
Vậy x = 12
bạn ơi là 3,4 ko phải là 3.4 (3 nhân 4) nhé và 2,6 cũng như vậy lun rất tiếc :((
|x - 3,4| + |2,6 - x| = 0
=>|x-3,4|=0 và |2,6-x|=0
=>x-3,4=0 và 2,6-x=0
x=3,4 và x=2,6
Vô lý vì x không thể nhận 2 giá trị cùng một lúc
Vậy x thuộc rỗng
\(\left|x-3,4\right|+\left|2,6-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-3,4=0\\2,6-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=3,4\\x=2,6\end{cases}}}\)
|x-3,4|+|2,6-x|=0
vì : |x-3,4| >= 0 và |2,6-x| >= 0
|x-3,4|+|2,6-x|=0 khi |x-3,4| = 0 và |2,6-x|=0
+) |x-3,4| = 0
=> x - 3,4 = 0
=> x = 3,4
+) |2,6-x|=0
=> 2,6 - x = 0
=> x = 2,6
3,4 khác 2,6
Vậy không có giá trị nào của x thỏa mãn
Cần cm BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2\left|ab\right|\ge a^2+b^2+2ab\)
\(\Leftrightarrow\left|ab\right|\ge ab\)
Dấu = khi \(ab\ge0\)
Áp dụng cho bài dưới đc:
\(\left|x-3,4\right|+\left|2,6-x\right|\ge\left|x-3,4+2,6-x\right|=0,8>0\)
=>pt vô nghiệm
ng` thông minh thì k cần CM bđt kia đâu t lm thêm thôi ghi cx đc, k ghi cx đc
l x-3,4 l + l 2,6 -x l = 0
vì l x-3,4 l >= 0 với mọi x ; l 2,6 -x l >= 0 ( với mọi x)
=> l x-3,4 l + l 2,6 -x l = 0 khi
\(\hept{\begin{cases}x-3,4=0\\2,6-x=0\end{cases}}\)=> \(\hept{\begin{cases}x=3,4\\x=2,6\end{cases}}\)
vì |x-3,4| > 0;|2,6-x|>0
=>|x-3,4|+|2,6-x|>0
mà theo đề:|x-3,4|+|2,6-x|=0
=>|x-3,4|=|2,6-x|=0
=>x=3,4 và x=2,6
ko thể xảy ra 2 giá trị cùng lúc nên x thuộc rỗng
l x - 3,4 l + l 2,6 - x l = 0
=> l x - 3,4 l= 0 hoặc l 2,6 - x l = 0
=> x-3,4 =0 l 2,6-x = 0
=> x =0+3,4 l x = 2,6-0
=> x =3,4 l x = 2,6
\(\left|x-3,4\right|+\left|2,6-x\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-3,4\right|\ge0\forall x\\\left|2,6-x\right|\ge0\forall x\end{cases}\Rightarrow\left|x-3,4\right|+\left|2,6-x\right|}\ge0\forall x\)
Mà \(\left|x-3,4\right|+\left|2,6-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-3,4\right|=0\\\left|2,6-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3,4=0\\2,6-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3,4\\x=2,6\end{cases}\Rightarrow}x=\varnothing}\)
Vậy không tìm được giá trị x thỏa mãn
\(\left|x-3,4\right|+\left|2,6-x\right|=0\)
Ta có:
\(\hept{\begin{cases}x-3.4\ge0\forall x\\2,6-x\ge0\forall x\end{cases}\Rightarrow\left|x-3,4\right|+\left|2,6-x\right|\ge0\forall x}\)
Vì \(\left|x-3,4\right|+\left|2,6-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-3,4=0\\2,6-x=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3,4\\x=2,6\end{cases}}\)
TH1: x = 3,4
|3,4-3,4| + |2,6-3,4| = 0 + (-0,8) = -0,8 ( loại )
TH2: x = 2,6
|2,6-3,4| + |2,6-2,6| = (-0,8) + 0 = -0,8 ( loại )
Vậy x \(\in\varnothing\)