Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)
\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)
\(< =>12-2+4x-2x^2=6x^2-13x+6\)
\(< =>10+4x-2x^2-6x^2+13x-6=0\)
\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)
b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)
\(< =>x-9=0< =>x=9\)
c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)
\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)
d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)
\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)
e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)
\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)
f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)
\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)
g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)
\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)
h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
\(< =>x^2-16-6x+4=x^2-8x+16\)
\(< =>x^2-6x-12-x^2+8x-16=0\)
\(< =>2x-28=0< =>x=\frac{28}{2}=14\)
q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề
a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)
b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)
c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)
d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)
a)2x+2>4
<=> 2x>4-2
<=>2x>2
<=>x>1
Vậy...
b)3x+2>-5
<=>3x>-5-2
<=>3x>-7
<=>x>\(\dfrac{-7}{3}\)
Vậy...
c)10-2x>2
<=>-2x>-10+2
<=>-2x>-8
<=>x<4
Vậy...
d)1-2x<3
<=>-2x<3-1
<=>-2x<2
<=>x>-1
Vậy...
e)10x+3-5\(\le\)14x+12
<=>10x-2\(\le\)14x+12
<=>10x-14x\(\le\)2+12
<=>-4x\(\le\)14
<=>x\(\ge\)\(\dfrac{-7}{2}\)
Vậy...
f)(3x-1)<2x+4
<=> 3x-2x<1+4
<=>x<5
Vậy...
a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)
b , Ta có : \(4x^2-2x+3\)= \(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)
c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)
= \(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)
Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)
1/
a, (x-3)2+(4+x)(4-x)=10
<=>x2-6x+9+(16-x2)=10
<=>-6x+25=10
<=>-6x=-15
<=>x=5/2
còn lại tương tự a
2/
a, \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích 3 nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 2,3
Mà (2,3)=1
=>a(a+1)(a+2) chia hết cho 6 (đpcm)
b, \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\left(đpcm\right)\)
c, \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm)
d, \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2-1\le-1< 0\) (đpcm)
g,\(-4\left(x-1\right)^2+\left(2x+1\right)\left(2x-1\right)=-3\)
\(\Leftrightarrow-4\left(x^2-2x+1\right)+4x^2-1=-3\)
\(\Leftrightarrow-4x^2+8x-4+4x^2-1=-3\)
\(\Leftrightarrow8x=2\)
\(\Leftrightarrow x=\frac{1}{4}\)
bn xem lại đi nha
Câu 1:
\(3x\left(12x+4\right)+9x\left(4x+3\right)\)
\(\Leftrightarrow3x\left(12x+4\right)+3x\left[3.\left(4x+3\right)\right]\)
\(\Leftrightarrow3x\left(12x+4\right)+3x\left(12x+6\right)\)
\(\Leftrightarrow3x\left[12x+4+12x+6\right]\)
\(\Leftrightarrow3x.\left(24x+10\right)\)
\(\Leftrightarrow72x^2+30x\)
Câu 2:
\(x\left(5+2x\right)+2x^2\left(x-1\right)\)
\(\Leftrightarrow5x+2x^2+2x^3-2x^2\)
\(\Leftrightarrow2x^3+5x\)
Đề 1
- Use different phrasing or notations
- Enter whole words instead of abbreviations
- Avoid mixing mathemaal and other notations
- Check your spelling
- Give your input in English
- Wolfram|Alpha answers specific questions rather than explaining general topicsEnter "2 cups of sugar", not "nutrition information"
- You can only get answers about objective factsTry "highest mountain", not "most beautiful painting"
- Only what is known is known to Wolfram|AlphaAsk "how many men in Mauritania", not "how many monsters in Loch Ness"
- Only public information is availableRequest "GDP of France", not "home phone of Michael Jordan"
Input:
Open code
Inequality plot:
Open code
Alternate forms:
Open code
Open code
Expanded form:
Open code
Solution:
- Approximate form
Open code
Integer solution:
Open code
1.
\(a,3x-7=\left|x-1\right|+2\)
+, Nếu \(x\ge1\) ta có: \(3x-7=x-1+2\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\) (thỏa mãn).
+, Nếu \(x\le1\) ta có: \(3x-7=1-x+2\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=2.5\) (loại).
Vậy tập nghiệm của phương trình là S =\(\left\{4\right\}\)
\(b,\left|-x-3\right|+2x=1+2x\)
Nếu \(x\le3\) ta có: \(-x-3+2x=1+2x\)
\(\Leftrightarrow\)\(-x=4\)
\(\Leftrightarrow x=-4\) (thỏa mãn)
Nếu \(x>-3\) ta có:\(x+3+2x=1+2x\)
\(\Leftrightarrow x=-2\) (thỏa mãn)
Vậy tập nghiệm của phương trình là S=\(\left\{-4;-2\right\}\)
2.
a, A = | x - 3 | + 2x + 4 với x\(\ge\)3
\(\Leftrightarrow\) A = x - 3 + 2x + 4
\(\Leftrightarrow\) A = 3x + 1
b, B = |-x | + 3x - 7 với x<2
Nếu 0 \(\le\) x < 2 thì ta có: B = x + 3x -7
\(\Leftrightarrow\) B = 4x -7
Nếu x < 0 thì ta có: B = -x + 3x -7
\(\Leftrightarrow\) B = 2x - 7
c, C = | x -5 | + | x | - 2x - 3 với x < 4
Phần này bạn lập bảng xét dấu hoặc thay vào từng phần như trên là ra.
Bảng ở trên đây mình kẻ không được.
vì x >= 3 => x - 3 = 2x +1
=> x + 1 = -3 > x = -4
\(|x-3|=2x+1\)( ĐK: \(x\ge3\))
\(=>x-3=2x+1\)hoặc \(x-3=-\left(2x+1\right)\)
TH1: x - 3 = 2x +1
=> -3 - 1 = 2x - x
=> -4 = x
Vậy x = -4 ( Không thỏa mãn )
TH2: x - 3 = - ( 2x + 1 )
=> x - 3 = - 2x - 1
=> -3 + 1 = -2x - x
=> -2 = -3x
=> x = 3/2 ( Không thỏa mãn )
Vậy không có giá trị nào của x thỏa mãn điều kiện cần tìm.