Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
8: \(=\dfrac{x+3}{x\left(x-3\right)}\)
9: \(=\dfrac{x-2}{x-5}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-2\right)^2}=\dfrac{x+5}{x-2}\)
10: \(=1:\dfrac{a-1}{a}=\dfrac{a}{a-1}\)
12: \(=\dfrac{6\left(x+1\right)}{3x\left(x+1\right)}=\dfrac{2}{x}\)
13: \(\dfrac{3}{x+3}-\dfrac{x-6}{x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2x+6}{x\left(x+3\right)}=\dfrac{2}{x}\)
dài quá, làm từ từ nhé
1, \(\left(a-b\right)^2\left(2a-3b\right)-\left(b-a\right)^2\left(3a-5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(2a-3b-3a+5b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-b\right)^2\left(-a+2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=-\left(a-b\right)^2\left(a-2b\right)+\left(a+b\right)^2\left(a-2b\right)\)
\(=\left(a-2b\right)\left[\left(a+b\right)^2-\left(a-b\right)^2\right]\)
\(=\left(a-2b\right)\left(a+b-a+b\right)\left(a+b+a-b\right)\)
\(=4ab\left(a-2b\right)\)
2, \(x^4-4\left(x^2+5\right)-25=\left(x^2-25\right)-4\left(x^2+5\right)=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)
\(=\left(x^2-9\right)\left(x^2+5\right)=\left(x-3\right)\left(x+3\right)\left(x^2+5\right)\)
3,\(\left(2-x\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)=\left(x-2\right)^2+\left(x-2\right)\left(x+3\right)-\left(4x^2-1\right)\)
\(=\left(x-2\right)\left(x-2+x+3\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2\right)\left(2x+1\right)-\left(2x-1\right)\left(2x+1\right)\)
\(=\left(x-2-2x+1\right)\left(2x+1\right)\)
\(=\left(-x-1\right)\left(2x+1\right)\)
4, câu này đề thiếu
5,\(16\left(xy+6\right)^2-\left(4x^2+y^2-25\right)^2=\left(4xy+24\right)^2-\left(4x^2+y^2-25\right)^2\)
\(=\left(4xy+24-4x^2-y^2+25\right)\left(4xy+24+4x^2+y^2-25\right)\)
\(=\left[49-\left(4x^2-4xy+y^2\right)\right]\left[\left(4x^2+4xy+y^2\right)-1\right]\)
\(=\left[49-\left(2x-y\right)^2\right]\left[\left(2x+y\right)^2-1\right]\)
\(=\left(7-2x+y\right)\left(7+2x-y\right)\left(2x+y-1\right)\left(2x+y+1\right)\)
a: \(A=\left(a+1\right)^3=10^3=1000\)
b: \(B=\left(x+1\right)^3=20^3=8000\)
c: \(C=a^3+3a^2+3a+1+5\)
\(=30^3+5=27005\)
1. a,
(a+b)3 + (a-b) 3 - 2a3 = a3 + 3ab2+ 3a2b + b3+ a3 - 3a2b + 3ab2- b3 - 2a3
= 6ab2
bài 1 : điền vào chỗ chấm để đk khẳng định đúng :
a) (.x..+2y...)2=x2+..4y.+4y2
b) (.a..-.3b..)2=a2-6ab+.9b2..
c) (.m..+.\(\frac{1}{2}\)..)2=.m2..+m+1/4
d) 25a2-..\(\frac{1}{4}b\).=(.5a..+1/2b)(..5a..-1/2b)
e)(.2x...+.1..)^2 = 4x^2 +.4x..+1
g)(2-x)(.4..+.2x..+.x2..)=8-x^3
h) 16a^2 - ..9. = (..4a.+3)(..4a.-3)
f)25 - ..30y.+9y^2=(..5.+...3y.)^2
1: =(4x-1)^2-3(4x-1)
=(4x-1)(4x-1-3)
=4(x-1)(4x-1)
2: =-8x^4y^5(2y+3x)
3: =(a-5)^2-4b^2
=(a-5-2b)(a-5+2b)
5: =x^2-mx-nx+mn
=x(x-m)-n(x-m)
=(x-m)(x-n)
6: =(4a^2-3a-18-4a^2-3a)(4a^2-3a-18+4a^2+3a)
=(-6a-18)(8a^2-18)
=-6(2a-3)(2x+3)(a+3)
Phân tích đa thức thành nhân tử:
a, \(36a^2-\left(a^2+9\right)^2\)
\(=\left(6a\right)^2-\left(a^2+9\right)^2\)
\(=\left(6a-a^2-9\right)\left(6a+a^2+9\right)\)
b, \(\left(a+3b\right)^2-\left(a^2+9\right)^2\)
\(=\left(a+3b-a^2-9\right)\left(a+3b+a^2+9\right)\)
c, \(9\left(2a-x\right)^2-4\left(3a-x\right)^2\)
\(=\left[3\left(2a-x\right)\right]^2-\left[2\left(3a-x\right)\right]^2\)
\(=\left(6a-3x\right)^2-\left(6a-2x\right)^2\)
\(=\left(6a-3x-6a+2x\right)\left(6a-3x+6a-2x\right)\)
\(=\left(-x\right)\left(12a-5x\right)\)
e, \(x^4+x^3+x+1\)
\(=\left(x^4+x^3\right)+\left(x+1\right)\)
\(=x^3\left(x+1\right)+\left(x+1\right)\)
\(=\left(x^3+1\right)\left(x+1\right)\)
a: \(A=x^2-10x+25+1\)
\(=\left(x-5\right)^2+1\)
\(=100^2+1=10001\)
b: \(B=2\left(a^2+a-5a-5\right)-\left(a^2-10a+25\right)+36\)
\(=2a^2-8a-10-a^2+10a-25+36\)
\(=a^2+2a+1\)
\(=\left(a+1\right)^2=100^2=10000\)
c: \(C=a^3+3a^2+3a+1=\left(a+1\right)^3=100^3=1000000\)
d: \(E=a^3+3a^2+3a+1+5\)
\(=\left(a+1\right)^3+5\)
\(=30^3+5=27005\)
a: \(=\dfrac{x-2}{x-5}\cdot\dfrac{\left(x-5\right)\left(x+5\right)}{\left(x-2\right)^2}=\dfrac{x+5}{x-2}\)
b: \(=1:\dfrac{a-1}{a}=\dfrac{a}{a-1}\)
c: \(=\dfrac{a+6-3}{3\left(a+3\right)}\cdot\dfrac{27a}{a+2}=\dfrac{a+3}{3\left(a+3\right)}\cdot\dfrac{27a}{a+2}\)
\(=\dfrac{9a}{a+2}\)